misc changes.

This commit is contained in:
2014-11-10 21:46:32 +04:00
parent be29c8ecd5
commit 352f5b0c8c
5 changed files with 74 additions and 106 deletions

View File

@@ -1,24 +0,0 @@
/* Check cf5-opt.vim defs.
VIM: let g:lcppflags="-std=c++11 -O2 -pthread"
VIM: let g:wcppflags="/O2 /EHsc /DWIN32"
*/
#include <iostream>
/*
Largest palindrome product
Problem 4
A palindromic number reads the same both ways. The largest palindrome made
from the product of two 2-digit numbers is 9009 = 91 x 99.
Find the largest palindrome made from the product of two 3-digit numbers.
Solution:
*/
int main ( void )
{
return 0;
}

View File

@@ -0,0 +1,11 @@
#Largest palindrome product
#Problem 4
#
#A palindromic number reads the same both ways. The largest palindrome made
#from the product of two 2-digit numbers is 9009 = 91 x 99.
#
#Find the largest palindrome made from the product of two 3-digit numbers.
#
#Solution:
#

View File

@@ -1,8 +1,3 @@
#
#VIM: let g:lcppflags="-std=c++11 -O2 -pthread"
#VIM: let g:wcppflags="/O2 /EHsc /DWIN32"
#
#
#Special Pythagorean triplet
#Problem 9

View File

@@ -1,46 +1,35 @@
/* Check cf5-opt.vim defs.
VIM: let g:lcppflags="-std=c++11 -O2 -pthread"
VIM: let g:wcppflags="/O2 /EHsc /DWIN32"
*/
#include <iostream>
#Largest product in a grid
#Problem 11
#
#In the 20x20 grid below, four numbers along a diagonal line have
#been marked in red.
#
#08 02 22 97 38 15 00 40 00 75 04 05 07 78 52 12 50 77 91 08
#49 49 99 40 17 81 18 57 60 87 17 40 98 43 69 48 04 56 62 00
#81 49 31 73 55 79 14 29 93 71 40 67 53 88 30 03 49 13 36 65
#52 70 95 23 04 60 11 42 69 24 68 56 01 32 56 71 37 02 36 91
#22 31 16 71 51 67 63 89 41 92 36 54 22 40 40 28 66 33 13 80
#24 47 32 60 99 03 45 02 44 75 33 53 78 36 84 20 35 17 12 50
#32 98 81 28 64 23 67 10 26 38 40 67 59 54 70 66 18 38 64 70
#67 26 20 68 02 62 12 20 95 63 94 39 63 08 40 91 66 49 94 21
#24 55 58 05 66 73 99 26 97 17 78 78 96 83 14 88 34 89 63 72
#21 36 23 09 75 00 76 44 20 45 35 14 00 61 33 97 34 31 33 95
#78 17 53 28 22 75 31 67 15 94 03 80 04 62 16 14 09 53 56 92
#16 39 05 42 96 35 31 47 55 58 88 24 00 17 54 24 36 29 85 57
#86 56 00 48 35 71 89 07 05 44 44 37 44 60 21 58 51 54 17 58
#19 80 81 68 05 94 47 69 28 73 92 13 86 52 17 77 04 89 55 40
#04 52 08 83 97 35 99 16 07 97 57 32 16 26 26 79 33 27 98 66
#88 36 68 87 57 62 20 72 03 46 33 67 46 55 12 32 63 93 53 69
#04 42 16 73 38 25 39 11 24 94 72 18 08 46 29 32 40 62 76 36
#20 69 36 41 72 30 23 88 34 62 99 69 82 67 59 85 74 04 36 16
#20 73 35 29 78 31 90 01 74 31 49 71 48 86 81 16 23 57 05 54
#01 70 54 71 83 51 54 69 16 92 33 48 61 43 52 01 89 19 67 48
#The product of these numbers is 26 * 63 *78 * 14 = 1788696.
#
#What is the greatest product of four adjacent numbers in the same
#direction (up, down, left, right, or diagonally) in the 20×20 grid?
#
#Solution:
#
/*
Largest product in a grid
Problem 11
In the 20x20 grid below, four numbers along a diagonal line have been marked in red.
08 02 22 97 38 15 00 40 00 75 04 05 07 78 52 12 50 77 91 08
49 49 99 40 17 81 18 57 60 87 17 40 98 43 69 48 04 56 62 00
81 49 31 73 55 79 14 29 93 71 40 67 53 88 30 03 49 13 36 65
52 70 95 23 04 60 11 42 69 24 68 56 01 32 56 71 37 02 36 91
22 31 16 71 51 67 63 89 41 92 36 54 22 40 40 28 66 33 13 80
24 47 32 60 99 03 45 02 44 75 33 53 78 36 84 20 35 17 12 50
32 98 81 28 64 23 67 10 26 38 40 67 59 54 70 66 18 38 64 70
67 26 20 68 02 62 12 20 95 63 94 39 63 08 40 91 66 49 94 21
24 55 58 05 66 73 99 26 97 17 78 78 96 83 14 88 34 89 63 72
21 36 23 09 75 00 76 44 20 45 35 14 00 61 33 97 34 31 33 95
78 17 53 28 22 75 31 67 15 94 03 80 04 62 16 14 09 53 56 92
16 39 05 42 96 35 31 47 55 58 88 24 00 17 54 24 36 29 85 57
86 56 00 48 35 71 89 07 05 44 44 37 44 60 21 58 51 54 17 58
19 80 81 68 05 94 47 69 28 73 92 13 86 52 17 77 04 89 55 40
04 52 08 83 97 35 99 16 07 97 57 32 16 26 26 79 33 27 98 66
88 36 68 87 57 62 20 72 03 46 33 67 46 55 12 32 63 93 53 69
04 42 16 73 38 25 39 11 24 94 72 18 08 46 29 32 40 62 76 36
20 69 36 41 72 30 23 88 34 62 99 69 82 67 59 85 74 04 36 16
20 73 35 29 78 31 90 01 74 31 49 71 48 86 81 16 23 57 05 54
01 70 54 71 83 51 54 69 16 92 33 48 61 43 52 01 89 19 67 48
The product of these numbers is 26 * 63 *78 * 14 = 1788696.
What is the greatest product of four adjacent numbers in the same direction (up, down, left, right, or diagonally) in the 20×20 grid?
Solution:
*/
int main ( void )
{
std::cout << s << std::endl;
return 0;
}

View File

@@ -1,36 +1,33 @@
/* Check cf5-opt.vim defs.
VIM: let g:lcppflags="-std=c++11 -O2 -pthread"
VIM: let g:wcppflags="/O2 /EHsc /DWIN32"
*/
#include <iostream>
#Highly divisible triangular number
#Problem 12
#
#The sequence of triangle numbers is generated by adding the natural numbers.
#So the 7th triangle number would be 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28. The first
#ten terms would be:
#
#1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ...
#
#Let us list the factors of the first seven triangle numbers:
#
# 1: 1
# 3: 1,3
# 6: 1,2,3,6
#10: 1,2,5,10
#15: 1,3,5,15
#21: 1,3,7,21
#28: 1,2,4,7,14,28
#We can see that 28 is the first triangle number to have over five divisors.
#
#What is the value of the first triangle number to have over five hundred
#divisors?
#
#Solution:
#
/*
Highly divisible triangular number
Problem 12
The sequence of triangle numbers is generated by adding the natural numbers. So the 7th triangle number would be 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28. The first ten terms would be:
1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ...
Let us list the factors of the first seven triangle numbers:
1: 1
3: 1,3
6: 1,2,3,6
10: 1,2,5,10
15: 1,3,5,15
21: 1,3,7,21
28: 1,2,4,7,14,28
We can see that 28 is the first triangle number to have over five divisors.
What is the value of the first triangle number to have over five hundred divisors?
Solution:
*/
int main ( void )
{
return 0;
}
iiiiiiiiiiiiiiiiii
kjk
jkj
kjkj
j