From 352f5b0c8c327576910246d9c8ba7c2a3f1b466a Mon Sep 17 00:00:00 2001 From: Vahagn Khachatryan Date: Mon, 10 Nov 2014 21:46:32 +0400 Subject: [PATCH] misc changes. --- .../p004_LargestPalindromeProduct.cpp | 24 ------ ProjectEuler/p004_LargestPalindromeProduct.py | 11 +++ .../p009_SpecialPythagoreanTriplet.py | 5 -- ProjectEuler/p011_LargestProductInAGrid.py | 77 ++++++++----------- .../p012_HighlyDivisibleTriangularNumber.py | 63 ++++++++------- 5 files changed, 74 insertions(+), 106 deletions(-) delete mode 100644 ProjectEuler/p004_LargestPalindromeProduct.cpp create mode 100644 ProjectEuler/p004_LargestPalindromeProduct.py diff --git a/ProjectEuler/p004_LargestPalindromeProduct.cpp b/ProjectEuler/p004_LargestPalindromeProduct.cpp deleted file mode 100644 index 2deb39d..0000000 --- a/ProjectEuler/p004_LargestPalindromeProduct.cpp +++ /dev/null @@ -1,24 +0,0 @@ -/* Check cf5-opt.vim defs. -VIM: let g:lcppflags="-std=c++11 -O2 -pthread" -VIM: let g:wcppflags="/O2 /EHsc /DWIN32" -*/ -#include - -/* -Largest palindrome product -Problem 4 - -A palindromic number reads the same both ways. The largest palindrome made -from the product of two 2-digit numbers is 9009 = 91 x 99. - -Find the largest palindrome made from the product of two 3-digit numbers. - -Solution: -*/ - -int main ( void ) -{ - - return 0; -} - diff --git a/ProjectEuler/p004_LargestPalindromeProduct.py b/ProjectEuler/p004_LargestPalindromeProduct.py new file mode 100644 index 0000000..fabfa4b --- /dev/null +++ b/ProjectEuler/p004_LargestPalindromeProduct.py @@ -0,0 +1,11 @@ +#Largest palindrome product +#Problem 4 +# +#A palindromic number reads the same both ways. The largest palindrome made +#from the product of two 2-digit numbers is 9009 = 91 x 99. +# +#Find the largest palindrome made from the product of two 3-digit numbers. +# +#Solution: +# + diff --git a/ProjectEuler/p009_SpecialPythagoreanTriplet.py b/ProjectEuler/p009_SpecialPythagoreanTriplet.py index 78dbfd1..9659637 100644 --- a/ProjectEuler/p009_SpecialPythagoreanTriplet.py +++ b/ProjectEuler/p009_SpecialPythagoreanTriplet.py @@ -1,8 +1,3 @@ -# -#VIM: let g:lcppflags="-std=c++11 -O2 -pthread" -#VIM: let g:wcppflags="/O2 /EHsc /DWIN32" -# - # #Special Pythagorean triplet #Problem 9 diff --git a/ProjectEuler/p011_LargestProductInAGrid.py b/ProjectEuler/p011_LargestProductInAGrid.py index a64ea56..d6d085c 100644 --- a/ProjectEuler/p011_LargestProductInAGrid.py +++ b/ProjectEuler/p011_LargestProductInAGrid.py @@ -1,46 +1,35 @@ -/* Check cf5-opt.vim defs. -VIM: let g:lcppflags="-std=c++11 -O2 -pthread" -VIM: let g:wcppflags="/O2 /EHsc /DWIN32" -*/ -#include +#Largest product in a grid +#Problem 11 +# +#In the 20x20 grid below, four numbers along a diagonal line have +#been marked in red. +# +#08 02 22 97 38 15 00 40 00 75 04 05 07 78 52 12 50 77 91 08 +#49 49 99 40 17 81 18 57 60 87 17 40 98 43 69 48 04 56 62 00 +#81 49 31 73 55 79 14 29 93 71 40 67 53 88 30 03 49 13 36 65 +#52 70 95 23 04 60 11 42 69 24 68 56 01 32 56 71 37 02 36 91 +#22 31 16 71 51 67 63 89 41 92 36 54 22 40 40 28 66 33 13 80 +#24 47 32 60 99 03 45 02 44 75 33 53 78 36 84 20 35 17 12 50 +#32 98 81 28 64 23 67 10 26 38 40 67 59 54 70 66 18 38 64 70 +#67 26 20 68 02 62 12 20 95 63 94 39 63 08 40 91 66 49 94 21 +#24 55 58 05 66 73 99 26 97 17 78 78 96 83 14 88 34 89 63 72 +#21 36 23 09 75 00 76 44 20 45 35 14 00 61 33 97 34 31 33 95 +#78 17 53 28 22 75 31 67 15 94 03 80 04 62 16 14 09 53 56 92 +#16 39 05 42 96 35 31 47 55 58 88 24 00 17 54 24 36 29 85 57 +#86 56 00 48 35 71 89 07 05 44 44 37 44 60 21 58 51 54 17 58 +#19 80 81 68 05 94 47 69 28 73 92 13 86 52 17 77 04 89 55 40 +#04 52 08 83 97 35 99 16 07 97 57 32 16 26 26 79 33 27 98 66 +#88 36 68 87 57 62 20 72 03 46 33 67 46 55 12 32 63 93 53 69 +#04 42 16 73 38 25 39 11 24 94 72 18 08 46 29 32 40 62 76 36 +#20 69 36 41 72 30 23 88 34 62 99 69 82 67 59 85 74 04 36 16 +#20 73 35 29 78 31 90 01 74 31 49 71 48 86 81 16 23 57 05 54 +#01 70 54 71 83 51 54 69 16 92 33 48 61 43 52 01 89 19 67 48 +#The product of these numbers is 26 * 63 *78 * 14 = 1788696. +# +#What is the greatest product of four adjacent numbers in the same +#direction (up, down, left, right, or diagonally) in the 20×20 grid? +# +#Solution: +# -/* -Largest product in a grid -Problem 11 - -In the 20x20 grid below, four numbers along a diagonal line have been marked in red. - -08 02 22 97 38 15 00 40 00 75 04 05 07 78 52 12 50 77 91 08 -49 49 99 40 17 81 18 57 60 87 17 40 98 43 69 48 04 56 62 00 -81 49 31 73 55 79 14 29 93 71 40 67 53 88 30 03 49 13 36 65 -52 70 95 23 04 60 11 42 69 24 68 56 01 32 56 71 37 02 36 91 -22 31 16 71 51 67 63 89 41 92 36 54 22 40 40 28 66 33 13 80 -24 47 32 60 99 03 45 02 44 75 33 53 78 36 84 20 35 17 12 50 -32 98 81 28 64 23 67 10 26 38 40 67 59 54 70 66 18 38 64 70 -67 26 20 68 02 62 12 20 95 63 94 39 63 08 40 91 66 49 94 21 -24 55 58 05 66 73 99 26 97 17 78 78 96 83 14 88 34 89 63 72 -21 36 23 09 75 00 76 44 20 45 35 14 00 61 33 97 34 31 33 95 -78 17 53 28 22 75 31 67 15 94 03 80 04 62 16 14 09 53 56 92 -16 39 05 42 96 35 31 47 55 58 88 24 00 17 54 24 36 29 85 57 -86 56 00 48 35 71 89 07 05 44 44 37 44 60 21 58 51 54 17 58 -19 80 81 68 05 94 47 69 28 73 92 13 86 52 17 77 04 89 55 40 -04 52 08 83 97 35 99 16 07 97 57 32 16 26 26 79 33 27 98 66 -88 36 68 87 57 62 20 72 03 46 33 67 46 55 12 32 63 93 53 69 -04 42 16 73 38 25 39 11 24 94 72 18 08 46 29 32 40 62 76 36 -20 69 36 41 72 30 23 88 34 62 99 69 82 67 59 85 74 04 36 16 -20 73 35 29 78 31 90 01 74 31 49 71 48 86 81 16 23 57 05 54 -01 70 54 71 83 51 54 69 16 92 33 48 61 43 52 01 89 19 67 48 -The product of these numbers is 26 * 63 *78 * 14 = 1788696. - -What is the greatest product of four adjacent numbers in the same direction (up, down, left, right, or diagonally) in the 20×20 grid? - -Solution: -*/ - -int main ( void ) -{ - - std::cout << s << std::endl; - return 0; -} diff --git a/ProjectEuler/p012_HighlyDivisibleTriangularNumber.py b/ProjectEuler/p012_HighlyDivisibleTriangularNumber.py index d4f884e..8541ae2 100644 --- a/ProjectEuler/p012_HighlyDivisibleTriangularNumber.py +++ b/ProjectEuler/p012_HighlyDivisibleTriangularNumber.py @@ -1,36 +1,33 @@ -/* Check cf5-opt.vim defs. -VIM: let g:lcppflags="-std=c++11 -O2 -pthread" -VIM: let g:wcppflags="/O2 /EHsc /DWIN32" -*/ -#include +#Highly divisible triangular number +#Problem 12 +# +#The sequence of triangle numbers is generated by adding the natural numbers. +#So the 7th triangle number would be 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28. The first +#ten terms would be: +# +#1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ... +# +#Let us list the factors of the first seven triangle numbers: +# +# 1: 1 +# 3: 1,3 +# 6: 1,2,3,6 +#10: 1,2,5,10 +#15: 1,3,5,15 +#21: 1,3,7,21 +#28: 1,2,4,7,14,28 +#We can see that 28 is the first triangle number to have over five divisors. +# +#What is the value of the first triangle number to have over five hundred +#divisors? +# +#Solution: +# -/* -Highly divisible triangular number -Problem 12 -The sequence of triangle numbers is generated by adding the natural numbers. So the 7th triangle number would be 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28. The first ten terms would be: - -1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ... - -Let us list the factors of the first seven triangle numbers: - - 1: 1 - 3: 1,3 - 6: 1,2,3,6 -10: 1,2,5,10 -15: 1,3,5,15 -21: 1,3,7,21 -28: 1,2,4,7,14,28 -We can see that 28 is the first triangle number to have over five divisors. - -What is the value of the first triangle number to have over five hundred divisors? - -Solution: -*/ - -int main ( void ) -{ - - return 0; -} +iiiiiiiiiiiiiiiiii +kjk +jkj +kjkj +j