misc changes.
This commit is contained in:
@@ -1,24 +0,0 @@
|
|||||||
/* Check cf5-opt.vim defs.
|
|
||||||
VIM: let g:lcppflags="-std=c++11 -O2 -pthread"
|
|
||||||
VIM: let g:wcppflags="/O2 /EHsc /DWIN32"
|
|
||||||
*/
|
|
||||||
#include <iostream>
|
|
||||||
|
|
||||||
/*
|
|
||||||
Largest palindrome product
|
|
||||||
Problem 4
|
|
||||||
|
|
||||||
A palindromic number reads the same both ways. The largest palindrome made
|
|
||||||
from the product of two 2-digit numbers is 9009 = 91 x 99.
|
|
||||||
|
|
||||||
Find the largest palindrome made from the product of two 3-digit numbers.
|
|
||||||
|
|
||||||
Solution:
|
|
||||||
*/
|
|
||||||
|
|
||||||
int main ( void )
|
|
||||||
{
|
|
||||||
|
|
||||||
return 0;
|
|
||||||
}
|
|
||||||
|
|
||||||
11
ProjectEuler/p004_LargestPalindromeProduct.py
Normal file
11
ProjectEuler/p004_LargestPalindromeProduct.py
Normal file
@@ -0,0 +1,11 @@
|
|||||||
|
#Largest palindrome product
|
||||||
|
#Problem 4
|
||||||
|
#
|
||||||
|
#A palindromic number reads the same both ways. The largest palindrome made
|
||||||
|
#from the product of two 2-digit numbers is 9009 = 91 x 99.
|
||||||
|
#
|
||||||
|
#Find the largest palindrome made from the product of two 3-digit numbers.
|
||||||
|
#
|
||||||
|
#Solution:
|
||||||
|
#
|
||||||
|
|
||||||
@@ -1,8 +1,3 @@
|
|||||||
#
|
|
||||||
#VIM: let g:lcppflags="-std=c++11 -O2 -pthread"
|
|
||||||
#VIM: let g:wcppflags="/O2 /EHsc /DWIN32"
|
|
||||||
#
|
|
||||||
|
|
||||||
#
|
#
|
||||||
#Special Pythagorean triplet
|
#Special Pythagorean triplet
|
||||||
#Problem 9
|
#Problem 9
|
||||||
|
|||||||
@@ -1,46 +1,35 @@
|
|||||||
/* Check cf5-opt.vim defs.
|
#Largest product in a grid
|
||||||
VIM: let g:lcppflags="-std=c++11 -O2 -pthread"
|
#Problem 11
|
||||||
VIM: let g:wcppflags="/O2 /EHsc /DWIN32"
|
#
|
||||||
*/
|
#In the 20x20 grid below, four numbers along a diagonal line have
|
||||||
#include <iostream>
|
#been marked in red.
|
||||||
|
#
|
||||||
|
#08 02 22 97 38 15 00 40 00 75 04 05 07 78 52 12 50 77 91 08
|
||||||
|
#49 49 99 40 17 81 18 57 60 87 17 40 98 43 69 48 04 56 62 00
|
||||||
|
#81 49 31 73 55 79 14 29 93 71 40 67 53 88 30 03 49 13 36 65
|
||||||
|
#52 70 95 23 04 60 11 42 69 24 68 56 01 32 56 71 37 02 36 91
|
||||||
|
#22 31 16 71 51 67 63 89 41 92 36 54 22 40 40 28 66 33 13 80
|
||||||
|
#24 47 32 60 99 03 45 02 44 75 33 53 78 36 84 20 35 17 12 50
|
||||||
|
#32 98 81 28 64 23 67 10 26 38 40 67 59 54 70 66 18 38 64 70
|
||||||
|
#67 26 20 68 02 62 12 20 95 63 94 39 63 08 40 91 66 49 94 21
|
||||||
|
#24 55 58 05 66 73 99 26 97 17 78 78 96 83 14 88 34 89 63 72
|
||||||
|
#21 36 23 09 75 00 76 44 20 45 35 14 00 61 33 97 34 31 33 95
|
||||||
|
#78 17 53 28 22 75 31 67 15 94 03 80 04 62 16 14 09 53 56 92
|
||||||
|
#16 39 05 42 96 35 31 47 55 58 88 24 00 17 54 24 36 29 85 57
|
||||||
|
#86 56 00 48 35 71 89 07 05 44 44 37 44 60 21 58 51 54 17 58
|
||||||
|
#19 80 81 68 05 94 47 69 28 73 92 13 86 52 17 77 04 89 55 40
|
||||||
|
#04 52 08 83 97 35 99 16 07 97 57 32 16 26 26 79 33 27 98 66
|
||||||
|
#88 36 68 87 57 62 20 72 03 46 33 67 46 55 12 32 63 93 53 69
|
||||||
|
#04 42 16 73 38 25 39 11 24 94 72 18 08 46 29 32 40 62 76 36
|
||||||
|
#20 69 36 41 72 30 23 88 34 62 99 69 82 67 59 85 74 04 36 16
|
||||||
|
#20 73 35 29 78 31 90 01 74 31 49 71 48 86 81 16 23 57 05 54
|
||||||
|
#01 70 54 71 83 51 54 69 16 92 33 48 61 43 52 01 89 19 67 48
|
||||||
|
#The product of these numbers is 26 * 63 *78 * 14 = 1788696.
|
||||||
|
#
|
||||||
|
#What is the greatest product of four adjacent numbers in the same
|
||||||
|
#direction (up, down, left, right, or diagonally) in the 20×20 grid?
|
||||||
|
#
|
||||||
|
#Solution:
|
||||||
|
#
|
||||||
|
|
||||||
/*
|
|
||||||
Largest product in a grid
|
|
||||||
Problem 11
|
|
||||||
|
|
||||||
In the 20x20 grid below, four numbers along a diagonal line have been marked in red.
|
|
||||||
|
|
||||||
08 02 22 97 38 15 00 40 00 75 04 05 07 78 52 12 50 77 91 08
|
|
||||||
49 49 99 40 17 81 18 57 60 87 17 40 98 43 69 48 04 56 62 00
|
|
||||||
81 49 31 73 55 79 14 29 93 71 40 67 53 88 30 03 49 13 36 65
|
|
||||||
52 70 95 23 04 60 11 42 69 24 68 56 01 32 56 71 37 02 36 91
|
|
||||||
22 31 16 71 51 67 63 89 41 92 36 54 22 40 40 28 66 33 13 80
|
|
||||||
24 47 32 60 99 03 45 02 44 75 33 53 78 36 84 20 35 17 12 50
|
|
||||||
32 98 81 28 64 23 67 10 26 38 40 67 59 54 70 66 18 38 64 70
|
|
||||||
67 26 20 68 02 62 12 20 95 63 94 39 63 08 40 91 66 49 94 21
|
|
||||||
24 55 58 05 66 73 99 26 97 17 78 78 96 83 14 88 34 89 63 72
|
|
||||||
21 36 23 09 75 00 76 44 20 45 35 14 00 61 33 97 34 31 33 95
|
|
||||||
78 17 53 28 22 75 31 67 15 94 03 80 04 62 16 14 09 53 56 92
|
|
||||||
16 39 05 42 96 35 31 47 55 58 88 24 00 17 54 24 36 29 85 57
|
|
||||||
86 56 00 48 35 71 89 07 05 44 44 37 44 60 21 58 51 54 17 58
|
|
||||||
19 80 81 68 05 94 47 69 28 73 92 13 86 52 17 77 04 89 55 40
|
|
||||||
04 52 08 83 97 35 99 16 07 97 57 32 16 26 26 79 33 27 98 66
|
|
||||||
88 36 68 87 57 62 20 72 03 46 33 67 46 55 12 32 63 93 53 69
|
|
||||||
04 42 16 73 38 25 39 11 24 94 72 18 08 46 29 32 40 62 76 36
|
|
||||||
20 69 36 41 72 30 23 88 34 62 99 69 82 67 59 85 74 04 36 16
|
|
||||||
20 73 35 29 78 31 90 01 74 31 49 71 48 86 81 16 23 57 05 54
|
|
||||||
01 70 54 71 83 51 54 69 16 92 33 48 61 43 52 01 89 19 67 48
|
|
||||||
The product of these numbers is 26 * 63 *78 * 14 = 1788696.
|
|
||||||
|
|
||||||
What is the greatest product of four adjacent numbers in the same direction (up, down, left, right, or diagonally) in the 20×20 grid?
|
|
||||||
|
|
||||||
Solution:
|
|
||||||
*/
|
|
||||||
|
|
||||||
int main ( void )
|
|
||||||
{
|
|
||||||
|
|
||||||
std::cout << s << std::endl;
|
|
||||||
return 0;
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|||||||
@@ -1,36 +1,33 @@
|
|||||||
/* Check cf5-opt.vim defs.
|
#Highly divisible triangular number
|
||||||
VIM: let g:lcppflags="-std=c++11 -O2 -pthread"
|
#Problem 12
|
||||||
VIM: let g:wcppflags="/O2 /EHsc /DWIN32"
|
#
|
||||||
*/
|
#The sequence of triangle numbers is generated by adding the natural numbers.
|
||||||
#include <iostream>
|
#So the 7th triangle number would be 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28. The first
|
||||||
|
#ten terms would be:
|
||||||
|
#
|
||||||
|
#1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ...
|
||||||
|
#
|
||||||
|
#Let us list the factors of the first seven triangle numbers:
|
||||||
|
#
|
||||||
|
# 1: 1
|
||||||
|
# 3: 1,3
|
||||||
|
# 6: 1,2,3,6
|
||||||
|
#10: 1,2,5,10
|
||||||
|
#15: 1,3,5,15
|
||||||
|
#21: 1,3,7,21
|
||||||
|
#28: 1,2,4,7,14,28
|
||||||
|
#We can see that 28 is the first triangle number to have over five divisors.
|
||||||
|
#
|
||||||
|
#What is the value of the first triangle number to have over five hundred
|
||||||
|
#divisors?
|
||||||
|
#
|
||||||
|
#Solution:
|
||||||
|
#
|
||||||
|
|
||||||
/*
|
|
||||||
Highly divisible triangular number
|
|
||||||
Problem 12
|
|
||||||
|
|
||||||
The sequence of triangle numbers is generated by adding the natural numbers. So the 7th triangle number would be 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28. The first ten terms would be:
|
iiiiiiiiiiiiiiiiii
|
||||||
|
kjk
|
||||||
1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ...
|
jkj
|
||||||
|
kjkj
|
||||||
Let us list the factors of the first seven triangle numbers:
|
j
|
||||||
|
|
||||||
1: 1
|
|
||||||
3: 1,3
|
|
||||||
6: 1,2,3,6
|
|
||||||
10: 1,2,5,10
|
|
||||||
15: 1,3,5,15
|
|
||||||
21: 1,3,7,21
|
|
||||||
28: 1,2,4,7,14,28
|
|
||||||
We can see that 28 is the first triangle number to have over five divisors.
|
|
||||||
|
|
||||||
What is the value of the first triangle number to have over five hundred divisors?
|
|
||||||
|
|
||||||
Solution:
|
|
||||||
*/
|
|
||||||
|
|
||||||
int main ( void )
|
|
||||||
{
|
|
||||||
|
|
||||||
return 0;
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|||||||
Reference in New Issue
Block a user