Two solutions for Goldbach's conjecture and their complexity.

This commit is contained in:
2018-04-29 09:24:12 +01:00
parent 9fb5d6ce19
commit 2385aec24a

View File

@@ -3,68 +3,94 @@
#include <iostream>
#include <cmath>
#include <algorithm>
#include <chrono>
using namespace std;
/*
Given an even number ( greater than 2 ), return two prime numbers whose
sum will be equal to given number.
static std::vector<int> GetPrimes(const size_t n) {
std::vector<int> primes;
std::vector<int> lp(n + 1, 0);
NOTE A solution will always exist. read Goldbachs conjecture
for (auto i = 2u; i <= n; ++i) {
if (lp[i] == 0) {
lp[i] = i;
primes.push_back(i);
Example:
Input : 4
Output: 2 + 2 = 4
If there are more than one solutions possible, return the lexicographically
smaller solution.
*/
/*
* My understanding is:
* The first solution time complexity is O(n^2/log_n) + O(n) memory complexity.
* The second solution id O(n^2) complexity + O(0) memory complexity.
*/
#define SOLUTION 1
#if SOLUTION == 1
std::vector<size_t> primes;
std::unordered_set<size_t> primes_set;
void init_primes(const size_t n)
{
std::vector<bool> prime_table(n/2+1, true); // Only odd numbers.
primes.push_back(2);
for (auto p = 3; p <= n; p+=2) {
if ( prime_table[p/2] ) {
primes.push_back(p);
for ( int j = p*3; j <= n; j+=p*2 ) {
prime_table[j/2] = false;
}
}
}
for (auto j = 0u; j < primes.size() && primes[j] <= lp[i] && i * primes[j] <= n; ++j)
lp[i * primes[j]] = primes[j];
}
return primes;
primes_set.insert(primes.begin(), primes.end());
}
inline bool is_prime( int n, const vector<int>& primes ){
int sqrt_n = floor(sqrt(double(n)));
for ( int i = 0; i < primes.size() && primes[i] <= sqrt_n; ++i ){
if ( n % primes[i] == 0 ) {
std::vector<int> primesum(int A)
{
for ( int p : primes ){
if ( primes_set.find(A-p) != primes_set.end() ) {
return {p, A-p};
}
}
return {};
}
#elif SOLUTION == 2
bool is_prime(int a)
{
if ( a <2 )
return false;
int end = std::floor(std::sqrt(a));
for ( int i = 2; i <= end; ++i ){
if ( a % i == 0) {
return false;
}
}
return true;
}
vector<int> primesum(int A) {
std::vector<int> primesum(int A)
{
vector<int> primes;
#if 0
for ( int i = 2; i < A; ++i){
if ( is_prime(i,primes) ){
primes.push_back(i);
for ( int i = 2; i < A; ++i) {
if ( is_prime(i) && is_prime(A-i) ){
return {i,A-i};
}
}
#endif
primes = GetPrimes(A);
#if 1
unordered_set<int> primes_set(primes.begin(),primes.end());
for ( int i = 0; i < primes.size(); ++i ){
if ( primes_set.find(A-primes[i]) != primes_set.end() ) {
return {primes[i], A-primes[i]};
}
}
#else
for ( int i = 0; i < primes.size(); ++i ) {
auto it = std::lower_bound(primes.begin(), primes.end(), A - primes[i]);
if ( it != primes.end() && *it == A-primes[i] ) {
return {primes[i], A-primes[i]};
}
}
#endif
return {};
return {};
}
#endif
void solve_and_print(int A){
auto r = primesum(A);
std::cout << r[0] << ' ' << r[1] << std::endl;
@@ -72,8 +98,23 @@ void solve_and_print(int A){
int main()
{
auto begin = std::chrono::high_resolution_clock::now();
#if SOLUTION == 1
init_primes(16777218);
#endif
solve_and_print(4);
solve_and_print(10);
solve_and_print(16777214);
solve_and_print(16777218);
for ( int i = 4; i < 1000000; i+=2 ){
primesum(i);
}
auto end = std::chrono::high_resolution_clock::now();
std::chrono::duration<double> seconds = end - begin;
std::cout << "Time: " << seconds.count() << std::endl;
}