Files
test/puzzles/training/subset_min_max_count.cpp

75 lines
1.7 KiB
C++

/*
VIM: let b:lcppflags="-std=c++14 -O2 -pthread -I."
VIM: let b:wcppflags="/O2 /EHsc /DWIN32"
*/
#include "stdafx.h"
#include <iostream>
#include <exception>
#include <chrono>
#include <vector>
#include <algorithm>
/*
google-interview-questions
For a given vector of integers and integer K, find the number of non-empty subsets S such that min(S) + max(S) <= K
For example, for K = 8 and vector [2, 4, 5, 7], the solution is 5 ([2], [4], [2, 4], [2, 4, 5], [2, 5])
The time complexity should be O(n2). Approach and code was asked
*/
int countSubsets(std::vector<int> numbers, int k)
{
int total_sum = 0;
for (int i = 0; i < numbers.size(); ++i) {
if (2 * numbers[i] > k) {
continue;
}
int sum = 1;
int max = numbers[i];
int min = numbers[i];
for (int j = i+1; j < numbers.size(); ++j) {
int tmp_max = std::max(max, numbers[j]);
int tmp_min = std::min(min, numbers[j]);
if (tmp_max + tmp_min <= k) {
sum *= 2;
min = tmp_min;
max = tmp_max;
}
}
total_sum += sum;
}
return total_sum;
}
int main()
{try{
auto begin = std::chrono::high_resolution_clock::now();
//......
std::cout << countSubsets({ 2, 4, 5, 7 }, 8) << std::endl;
auto end = std::chrono::high_resolution_clock::now();
std::chrono::duration<double> seconds = end - begin;
std::cout << "Time: " << seconds.count() << std::endl;
return 0;
}
catch ( const std::exception& e )
{
std::cerr << std::endl
<< "std::exception(\"" << e.what() << "\")." << std::endl;
return 2;
}
catch ( ... )
{
std::cerr << std::endl
<< "unknown exception." << std::endl;
return 1;
}}