Files
test/project_euler/pe/p065.html

209 lines
9.3 KiB
HTML

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8" />
<meta name="author" content="Colin Hughes" />
<meta name="description" content="A website dedicated to the fascinating world of mathematics and programming" />
<meta name="keywords" content="programming,mathematics,problems,puzzles" />
<title>Problem 65 - Project Euler</title>
<link rel="shortcut icon" href="http://projecteuler.net/favicon.ico" />
<link rel="stylesheet" type="text/css" href="style_main.css" />
<link rel="stylesheet" type="text/css" href="style_light.css" />
<script type="text/x-mathjax-config">
MathJax.Hub.Config({
jax: ["input/TeX", "output/HTML-CSS"],
tex2jax: {
inlineMath: [ ["$","$"], ["\\(","\\)"] ],
displayMath: [ ["$$","$$"], ["\\[","\\]"] ],
processEscapes: true
},
"HTML-CSS": { availableFonts: ["TeX"] }
});
</script>
<script type="text/javascript" src="http://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS_HTML">
</script>
</head>
<body>
<div id="container">
<div id="nav" class="noprint">
<ul>
<li><a href="about" title="About" accesskey="h">About</a></li>
<li><a href="register" title="Register" accesskey="1">Register</a></li>
<li id="current"><a href="problems" title="Problems" accesskey="2">Problems</a></li>
<li><a href="login" title="Login" accesskey="3">Login</a></li>
</ul>
</div>
<div id="info_panel"><a href="rss2_euler.xml"><img src="images/icon_rss.png" alt="RSS Feed" title="RSS Feed" /></a><a href="secure=3505c"><img src="images/icon_lock.png" alt="Use secure connection" title="Use secure connection" /></a></div>
<div id="logo" class="noprint">
<img src="images/pe_banner_light.png" alt="Project Euler .net" />
</div>
<div id="content">
<div style="text-align:center;" class="print"><img src="images/pe_banner.png" alt="projecteuler.net" style="border:none;" /></div>
<h2>Convergents of e</h2><div class="info" style="cursor:help;width:200px;margin-bottom:10px;"><h3>Problem 65</h3><span style="width:300px;color:#666;">Published on Friday, 12th March 2004, 06:00 pm; Solved by 13567</span></div>
<div class="problem_content" role="problem">
<p>The square root of 2 can be written as an infinite continued fraction.</p>
<div style="margin-left:20px;">
<table border="0" cellspacing="0" cellpadding="0">
<tr>
<td><img src='images/symbol_radic.gif' width='14' height='16' alt='&radic;' border='0' style='vertical-align:middle;' />2 = 1 +</td>
<td colspan="4"><div style="text-align:center;">1<br /><img src="images/blackdot.gif" width="135" height="1" alt="" /><br /></div></td>
</tr>
<tr>
<td>&nbsp;</td>
<td>2 +</td>
<td colspan="3"><div style="text-align:center;">1<br /><img src="images/blackdot.gif" width="110" height="1" alt="" /><br /></div></td>
</tr>
<tr>
<td>&nbsp;</td>
<td>&nbsp;</td>
<td>2 +</td>
<td colspan="2"><div style="text-align:center;">1<br /><img src="images/blackdot.gif" width="85" height="1" alt="" /><br /></div></td>
</tr>
<tr>
<td>&nbsp;</td>
<td>&nbsp;</td>
<td>&nbsp;</td>
<td>2 +</td>
<td><div style="text-align:center;">1<br /><img src="images/blackdot.gif" width="60" height="1" alt="" /><br /></div></td>
</tr>
<tr>
<td>&nbsp;</td>
<td>&nbsp;</td>
<td>&nbsp;</td>
<td>&nbsp;</td>
<td>2 + ...</td>
</tr>
</table>
</div>
<p>The infinite continued fraction can be written, <img src='images/symbol_radic.gif' width='14' height='16' alt='&radic;' border='0' style='vertical-align:middle;' />2 = [1;(2)], (2) indicates that 2 repeats <i>ad infinitum</i>. In a similar way, <img src='images/symbol_radic.gif' width='14' height='16' alt='&radic;' border='0' style='vertical-align:middle;' />23 = [4;(1,3,1,8)].</p>
<p>It turns out that the sequence of partial values of continued fractions for square roots provide the best rational approximations. Let us consider the convergents for <img src='images/symbol_radic.gif' width='14' height='16' alt='&radic;' border='0' style='vertical-align:middle;' />2.</p>
<div style="margin-left:20px;">
<table border="0" cellspacing="0" cellpadding="0">
<tr>
<td>1 +</td>
<td><div style="text-align:center;">1<br /><img src="images/blackdot.gif" width="15" height="1" alt="" /><br /></div></td>
<td>= 3/2</td>
</tr>
<tr>
<td>&nbsp;</td>
<td><div style="text-align:center;">2</div></td>
<td>&nbsp;</td>
</tr>
</table>
<table border="0" cellspacing="0" cellpadding="0">
<tr>
<td>1 +</td>
<td colspan="2"><div style="text-align:center;">1<br /><img src="images/blackdot.gif" width="50" height="1" alt="" /><br /></div></td>
<td>= 7/5</td>
</tr>
<tr>
<td>&nbsp;</td>
<td>2 +</td>
<td><div style="text-align:center;">1<br /><img src="images/blackdot.gif" width="15" height="1" alt="" /><br /></div></td>
</tr>
<tr>
<td>&nbsp;</td>
<td>&nbsp;</td>
<td><div style="text-align:center;">2</div></td>
<td>&nbsp;</td>
</tr>
</table>
<table border="0" cellspacing="0" cellpadding="0">
<tr>
<td>1 +</td>
<td colspan="3"><div style="text-align:center;">1<br /><img src="images/blackdot.gif" width="80" height="1" alt="" /><br /></div></td>
<td>= 17/12</td>
</tr>
<tr>
<td>&nbsp;</td>
<td>2 +</td>
<td colspan="2"><div style="text-align:center;">1<br /><img src="images/blackdot.gif" width="50" height="1" alt="" /><br /></div></td>
<td>&nbsp;</td>
</tr>
<tr>
<td>&nbsp;</td>
<td>&nbsp;</td>
<td>2 +</td>
<td><div style="text-align:center;">1<br /><img src="images/blackdot.gif" width="15" height="1" alt="" /><br /></div></td>
<td>&nbsp;</td>
</tr>
<tr>
<td>&nbsp;</td>
<td>&nbsp;</td>
<td>&nbsp;</td>
<td><div style="text-align:center;">2</div></td>
<td>&nbsp;</td>
</tr>
</table>
<table border="0" cellspacing="0" cellpadding="0">
<tr>
<td>1 +</td>
<td colspan="4"><div style="text-align:center;">1<br /><img src="images/blackdot.gif" width="110" height="1" alt="" /><br /></div></td>
<td>= 41/29</td>
</tr>
<tr>
<td>&nbsp;</td>
<td>2 +</td>
<td colspan="3"><div style="text-align:center;">1<br /><img src="images/blackdot.gif" width="80" height="1" alt="" /><br /></div></td>
</tr>
<tr>
<td>&nbsp;</td>
<td>&nbsp;</td>
<td>2 +</td>
<td colspan="2"><div style="text-align:center;">1<br /><img src="images/blackdot.gif" width="50" height="1" alt="" /><br /></div></td>
<td>&nbsp;</td>
</tr>
<tr>
<td>&nbsp;</td>
<td>&nbsp;</td>
<td>&nbsp;</td>
<td>2 +</td>
<td><div style="text-align:center;">1<br /><img src="images/blackdot.gif" width="15" height="1" alt="" /><br /></div></td>
<td>&nbsp;</td>
</tr>
<tr>
<td>&nbsp;</td>
<td>&nbsp;</td>
<td>&nbsp;</td>
<td>&nbsp;</td>
<td><div style="text-align:center;">2</div></td>
<td>&nbsp;</td>
</tr>
</table>
</div>
<p>Hence the sequence of the first ten convergents for <img src='images/symbol_radic.gif' width='14' height='16' alt='&radic;' border='0' style='vertical-align:middle;' />2 are:</p>
<div class="info">1, 3/2, 7/5, 17/12, 41/29, 99/70, 239/169, 577/408, 1393/985, 3363/2378, ...</div>
<p>What is most surprising is that the important mathematical constant,<br /><i>e</i> = [2; 1,2,1, 1,4,1, 1,6,1 , ... , 1,2<i>k</i>,1, ...].</p>
<p>The first ten terms in the sequence of convergents for <i>e</i> are:</p>
<div class="info">2, 3, 8/3, 11/4, 19/7, 87/32, 106/39, 193/71, 1264/465, 1457/536, ...</div>
<p>The sum of digits in the numerator of the 10<sup>th</sup> convergent is 1+4+5+7=17.</p>
<p>Find the sum of digits in the numerator of the 100<sup>th</sup> convergent of the continued fraction for <i>e</i>.</p>
</div><br />
<br /></div>
<div id="footer" class="noprint">
<a href="copyright">Project Euler Copyright Information</a>
<!--/Creative Commons License--><!-- <rdf:RDF xmlns="http://web.resource.org/cc/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#">
<Work rdf:about="">
<license rdf:resource="http://creativecommons.org/licenses/by-nc-sa/2.0/uk/" />
<dc:type rdf:resource="http://purl.org/dc/dcmitype/Text" />
</Work>
<License rdf:about="http://creativecommons.org/licenses/by-nc-sa/2.0/uk/"><permits rdf:resource="http://web.resource.org/cc/Reproduction"/><permits rdf:resource="http://web.resource.org/cc/Distribution"/><requires rdf:resource="http://web.resource.org/cc/Notice"/><requires rdf:resource="http://web.resource.org/cc/Attribution"/><prohibits rdf:resource="http://web.resource.org/cc/CommercialUse"/><permits rdf:resource="http://web.resource.org/cc/DerivativeWorks"/><requires rdf:resource="http://web.resource.org/cc/ShareAlike"/></License></rdf:RDF> -->
</div>
</div>
<div style="height:1px;">&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; </div></body>
</html>