121 lines
8.7 KiB
HTML
121 lines
8.7 KiB
HTML
<!DOCTYPE html>
|
|
<html lang="en">
|
|
<head>
|
|
<meta charset="utf-8" />
|
|
<meta name="author" content="Colin Hughes" />
|
|
<meta name="description" content="A website dedicated to the fascinating world of mathematics and programming" />
|
|
<meta name="keywords" content="programming,mathematics,problems,puzzles" />
|
|
|
|
<title>Problem 153 - Project Euler</title>
|
|
<link rel="shortcut icon" href="http://projecteuler.net/favicon.ico" />
|
|
<link rel="stylesheet" type="text/css" href="style_main.css" />
|
|
<link rel="stylesheet" type="text/css" href="style_light.css" />
|
|
<script type="text/x-mathjax-config">
|
|
MathJax.Hub.Config({
|
|
jax: ["input/TeX", "output/HTML-CSS"],
|
|
tex2jax: {
|
|
inlineMath: [ ["$","$"], ["\\(","\\)"] ],
|
|
displayMath: [ ["$$","$$"], ["\\[","\\]"] ],
|
|
processEscapes: true
|
|
},
|
|
"HTML-CSS": { availableFonts: ["TeX"] }
|
|
});
|
|
</script>
|
|
|
|
<script type="text/javascript" src="http://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS_HTML">
|
|
</script>
|
|
</head>
|
|
|
|
<body>
|
|
<div id="container">
|
|
|
|
<div id="nav" class="noprint">
|
|
<ul>
|
|
<li><a href="about" title="About" accesskey="h">About</a></li>
|
|
<li><a href="register" title="Register" accesskey="1">Register</a></li>
|
|
<li id="current"><a href="problems" title="Problems" accesskey="2">Problems</a></li>
|
|
<li><a href="login" title="Login" accesskey="3">Login</a></li>
|
|
</ul>
|
|
</div>
|
|
<div id="info_panel"><a href="rss2_euler.xml"><img src="images/icon_rss.png" alt="RSS Feed" title="RSS Feed" /></a><a href="secure=49e03"><img src="images/icon_lock.png" alt="Use secure connection" title="Use secure connection" /></a></div>
|
|
|
|
<div id="logo" class="noprint">
|
|
<img src="images/pe_banner_light.png" alt="Project Euler .net" />
|
|
</div>
|
|
|
|
<div id="content">
|
|
<div style="text-align:center;" class="print"><img src="images/pe_banner.png" alt="projecteuler.net" style="border:none;" /></div>
|
|
<h2>Investigating Gaussian Integers</h2><div class="info" style="cursor:help;width:200px;margin-bottom:10px;"><h3>Problem 153</h3><span style="width:300px;color:#666;">Published on Saturday, 5th May 2007, 10:00 am; Solved by 1222</span></div>
|
|
<div class="problem_content" role="problem">
|
|
<p>As we all know the equation <var>x</var><sup>2</sup>=-1 has no solutions for real <var>x</var>.
|
|
<br />
|
|
If we however introduce the imaginary number <var>i</var> this equation has two solutions: <var>x=i</var> and <var>x=-i</var>.
|
|
<br />
|
|
If we go a step further the equation (<var>x</var>-3)<sup>2</sup>=-4 has two complex solutions: <var>x</var>=3+2<var>i</var> and <var>x</var>=3-2<var>i</var>.
|
|
<br />
|
|
<var>x</var>=3+2<var>i</var> and <var>x</var>=3-2<var>i</var> are called each others' complex conjugate.
|
|
<br />
|
|
Numbers of the form <var>a</var>+<var>bi</var> are called complex numbers.
|
|
<br />
|
|
In general <var>a</var>+<var>bi</var> and <var>a</var><img src='images/symbol_minus.gif' width='9' height='3' alt='−' border='0' style='vertical-align:middle;' /><var>bi</var> are each other's complex conjugate.</p>
|
|
<p>A Gaussian Integer is a complex number <var>a</var>+<var>bi</var> such that both <var>a</var> and <var>b</var> are integers.
|
|
<br />
|
|
The regular integers are also Gaussian integers (with <var>b</var>=0).
|
|
<br />
|
|
To distinguish them from Gaussian integers with <var>b</var> <img src='images/symbol_ne.gif' width='11' height='10' alt='≠' border='0' style='vertical-align:middle;' /> 0 we call such integers "rational integers."
|
|
<br />
|
|
A Gaussian integer is called a divisor of a rational integer <var>n</var> if the result is also a Gaussian integer.
|
|
<br />
|
|
If for example we divide 5 by 1+2<var>i</var> we can simplify <img src="project/images/p_153_formule1.gif" border="0" style="vertical-align:middle" alt="" /> in the following manner:
|
|
<br />
|
|
Multiply numerator and denominator by the complex conjugate of 1+2<var>i</var>: 1<img src='images/symbol_minus.gif' width='9' height='3' alt='−' border='0' style='vertical-align:middle;' />2<var>i</var>.
|
|
<br />
|
|
The result is
|
|
<img src="project/images/p_153_formule2.gif" border="0" alt="" style="vertical-align:middle;" />.
|
|
<br />
|
|
So 1+2<var>i</var> is a divisor of 5.
|
|
<br />
|
|
Note that 1+<var>i</var> is not a divisor of 5 because <img src="project/images/p_153_formule5.gif" border="0" style="vertical-align:middle;" alt="" />.
|
|
<br />
|
|
Note also that if the Gaussian Integer (<var>a</var>+<var>bi</var>) is a divisor of a rational integer <var>n</var>, then its complex conjugate (<var>a</var><img src='images/symbol_minus.gif' width='9' height='3' alt='−' border='0' style='vertical-align:middle;' /><var>bi</var>) is also a divisor of <var>n</var>.</p>
|
|
<p>In fact, 5 has six divisors such that the real part is positive: {1, 1 + 2<var>i</var>, 1 <img src='images/symbol_minus.gif' width='9' height='3' alt='−' border='0' style='vertical-align:middle;' /> 2<var>i</var>, 2 + <var>i</var>, 2 <img src='images/symbol_minus.gif' width='9' height='3' alt='−' border='0' style='vertical-align:middle;' /> <var>i</var>, 5}.
|
|
<br />
|
|
The following is a table of all of the divisors for the first five positive rational integers:</p>
|
|
<table align="center" border="1">
|
|
<tr><td width="20">
|
|
<var>n</var></td><td> Gaussian integer divisors<br />
|
|
with positive real part</td><td>Sum s(<var>n</var>) of <br />these
|
|
|
|
divisors</td></tr><tr>
|
|
<td>1</td><td>1</td><td>1</td>
|
|
</tr><tr>
|
|
<td>2</td><td>1, 1+<var>i</var>, 1-<var>i</var>, 2</td><td>5</td>
|
|
</tr><tr>
|
|
<td>3</td><td>1, 3</td><td>4</td>
|
|
</tr><tr>
|
|
<td>4</td><td>1, 1+<var>i</var>, 1-<var>i</var>, 2, 2+2<var>i</var>, 2-2<var>i</var>,4</td><td>13</td>
|
|
</tr><tr>
|
|
<td>5</td><td>1, 1+2<var>i</var>, 1-2<var>i</var>, 2+<var>i</var>, 2-<var>i</var>, 5</td><td>12</td>
|
|
</tr></table>
|
|
<p>For divisors with positive real parts, then, we have: <img src="project/images/p_153_formule6.gif" border="0" style="vertical-align:middle" alt="" />.</p>
|
|
<p>For 1 <img src='images/symbol_le.gif' width='10' height='12' alt='≤' border='0' style='vertical-align:middle;' /> <var>n</var> <img src='images/symbol_le.gif' width='10' height='12' alt='≤' border='0' style='vertical-align:middle;' /> 10<sup>5</sup>, <img src='images/symbol_sum.gif' width='11' height='14' alt='∑' border='0' style='vertical-align:middle;' /> s(<var>n</var>)=17924657155.</p>
|
|
<p>What is <img src='images/symbol_sum.gif' width='11' height='14' alt='∑' border='0' style='vertical-align:middle;' /> s(<var>n</var>) for 1 <img src='images/symbol_le.gif' width='10' height='12' alt='≤' border='0' style='vertical-align:middle;' /> <var>n</var> <img src='images/symbol_le.gif' width='10' height='12' alt='≤' border='0' style='vertical-align:middle;' /> 10<sup>8</sup>?</p>
|
|
</div><br />
|
|
<br /></div>
|
|
|
|
|
|
|
|
|
|
|
|
<div id="footer" class="noprint">
|
|
<a href="copyright">Project Euler Copyright Information</a>
|
|
<!--/Creative Commons License--><!-- <rdf:RDF xmlns="http://web.resource.org/cc/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#">
|
|
<Work rdf:about="">
|
|
<license rdf:resource="http://creativecommons.org/licenses/by-nc-sa/2.0/uk/" />
|
|
<dc:type rdf:resource="http://purl.org/dc/dcmitype/Text" />
|
|
</Work>
|
|
<License rdf:about="http://creativecommons.org/licenses/by-nc-sa/2.0/uk/"><permits rdf:resource="http://web.resource.org/cc/Reproduction"/><permits rdf:resource="http://web.resource.org/cc/Distribution"/><requires rdf:resource="http://web.resource.org/cc/Notice"/><requires rdf:resource="http://web.resource.org/cc/Attribution"/><prohibits rdf:resource="http://web.resource.org/cc/CommercialUse"/><permits rdf:resource="http://web.resource.org/cc/DerivativeWorks"/><requires rdf:resource="http://web.resource.org/cc/ShareAlike"/></License></rdf:RDF> -->
|
|
</div>
|
|
</div>
|
|
<div style="height:1px;"> </div></body>
|
|
</html> |