
Balanced Numbers
Problem 217
Published on Friday, 14th November 2008, 09:00 pm; Solved by 831
A positive integer with k (decimal) digits is called balanced if its first
k/2
digits sum to the same value as its last
k/2
digits, where
x
, pronounced ceiling of x, is the smallest integer
x, thus
π
= 4 and
5
= 5.
So, for example, all palindromes are balanced, as is 13722.
Let T(n) be the sum of all balanced numbers less than 10n.
Thus: T(1) = 45, T(2) = 540 and T(5) = 334795890.
Find T(47) mod 315