Cursera: machine learning ex4.
This commit is contained in:
@@ -0,0 +1,31 @@
|
||||
function W = randInitializeWeights(L_in, L_out)
|
||||
%RANDINITIALIZEWEIGHTS Randomly initialize the weights of a layer with L_in
|
||||
%incoming connections and L_out outgoing connections
|
||||
% W = RANDINITIALIZEWEIGHTS(L_in, L_out) randomly initializes the weights
|
||||
% of a layer with L_in incoming connections and L_out outgoing
|
||||
% connections.
|
||||
%
|
||||
% Note that W should be set to a matrix of size(L_out, 1 + L_in) as
|
||||
% the column row of W handles the "bias" terms
|
||||
%
|
||||
|
||||
% You need to return the following variables correctly
|
||||
W = zeros(L_out, 1 + L_in);
|
||||
|
||||
% ====================== YOUR CODE HERE ======================
|
||||
% Instructions: Initialize W randomly so that we break the symmetry while
|
||||
% training the neural network.
|
||||
%
|
||||
% Note: The first row of W corresponds to the parameters for the bias units
|
||||
%
|
||||
|
||||
eps = 0.001;
|
||||
W = rand(L_out,1+L_in)*(2*eps) - eps;
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
% =========================================================================
|
||||
|
||||
end
|
||||
Reference in New Issue
Block a user