Cursera: machine learning ex8.
This commit is contained in:
29
machine_learning/mlclass-ex8-008/mlclass-ex8/computeNumericalGradient.m
Executable file
29
machine_learning/mlclass-ex8-008/mlclass-ex8/computeNumericalGradient.m
Executable file
@@ -0,0 +1,29 @@
|
||||
function numgrad = computeNumericalGradient(J, theta)
|
||||
%COMPUTENUMERICALGRADIENT Computes the gradient using "finite differences"
|
||||
%and gives us a numerical estimate of the gradient.
|
||||
% numgrad = COMPUTENUMERICALGRADIENT(J, theta) computes the numerical
|
||||
% gradient of the function J around theta. Calling y = J(theta) should
|
||||
% return the function value at theta.
|
||||
|
||||
% Notes: The following code implements numerical gradient checking, and
|
||||
% returns the numerical gradient.It sets numgrad(i) to (a numerical
|
||||
% approximation of) the partial derivative of J with respect to the
|
||||
% i-th input argument, evaluated at theta. (i.e., numgrad(i) should
|
||||
% be the (approximately) the partial derivative of J with respect
|
||||
% to theta(i).)
|
||||
%
|
||||
|
||||
numgrad = zeros(size(theta));
|
||||
perturb = zeros(size(theta));
|
||||
e = 1e-4;
|
||||
for p = 1:numel(theta)
|
||||
% Set perturbation vector
|
||||
perturb(p) = e;
|
||||
loss1 = J(theta - perturb);
|
||||
loss2 = J(theta + perturb);
|
||||
% Compute Numerical Gradient
|
||||
numgrad(p) = (loss2 - loss1) / (2*e);
|
||||
perturb(p) = 0;
|
||||
end
|
||||
|
||||
end
|
||||
Reference in New Issue
Block a user