Cursera: Machine Learning Exercises 1 Accomplished.
This commit is contained in:
164
machine_learning/test.m
Normal file
164
machine_learning/test.m
Normal file
@@ -0,0 +1,164 @@
|
||||
%VIM: let g:flags=""
|
||||
%
|
||||
a = 3
|
||||
b = 'hi'
|
||||
b
|
||||
a = pi
|
||||
c = (3 >= 1 )
|
||||
disp(sprintf('2 decimals: %0.2f', a ))
|
||||
format long
|
||||
a
|
||||
format short
|
||||
a
|
||||
|
||||
A = [1 2; 3 4; 5 6] % define matrix
|
||||
v = [1 2 3] % row vector
|
||||
v = [1; 2; 3] % column vector
|
||||
v = 1:0.2:2 % vector from 1 to 2 with 0.2 increments
|
||||
v = 1:6 % vector 1 to 6
|
||||
|
||||
ones(2,3) % matrix of ones
|
||||
2*ones(2,3)
|
||||
zeros(3,1) % matrix of zeros
|
||||
eye(4) % identity matrix
|
||||
rand(2,3) % matrix of random numbers
|
||||
randn(2,3) % matrix of normal distribution random numbers
|
||||
|
||||
w = -6 + sqrt(10)*randn(1,10000)
|
||||
|
||||
hist(w,50) % histogram
|
||||
|
||||
size(A) % sizes of matrix as a row vector
|
||||
size(A,1) % number of rows
|
||||
size(A,2) % number of columns
|
||||
length(v) % length of a matrix
|
||||
|
||||
%load( 'file name' ) % load data from a file
|
||||
|
||||
who % what variables do I have.
|
||||
whos % detailed who
|
||||
|
||||
%v = priceY(1:10)
|
||||
%save savedfile.mat v
|
||||
%save savedfile.mat v -ascii
|
||||
|
||||
clear % remove variables
|
||||
|
||||
A = [1 2; 3 4; 5 6 ]
|
||||
A(3,2) % element on third row and second column
|
||||
A(3,:) % third row
|
||||
A(:,2) % second column
|
||||
|
||||
A([1 3], :) % matrix from 1 and 3 rows
|
||||
A(:,2) = [10; 11; 12] % assign to second column
|
||||
A = [A, [100; 101; 102]] % append to matrix
|
||||
|
||||
B = [ 3 3; 5 6; 6 7]
|
||||
|
||||
C = [ A B ] % append to the right
|
||||
D = [ A; B ] % append at bottom
|
||||
|
||||
A' % transpos
|
||||
A * B' % matrix mul
|
||||
A .* B % element vice mult
|
||||
A .^2 % element vice square
|
||||
|
||||
v = [ 1; 2; 3 ]
|
||||
|
||||
1 ./ v % reciprocal of v
|
||||
1 ./ A
|
||||
|
||||
log(v) % element vice log
|
||||
exp(v)
|
||||
abs(v)
|
||||
-v
|
||||
v + ones(lenght(v), 1)
|
||||
v + 1 % same as of above
|
||||
|
||||
a = [2 3 4 5]
|
||||
max(a) % max element in a
|
||||
[val, ind] = max(a) % val = max elem, ind = the index of elem
|
||||
|
||||
|
||||
a < 3 % elem vice compare
|
||||
find(a < 3)
|
||||
|
||||
A = magic(3)
|
||||
|
||||
[r,c] = find(A>=7)
|
||||
|
||||
sum(a)
|
||||
prod(a)
|
||||
floor(a)
|
||||
ceil(a)
|
||||
|
||||
max( rand(3), rand(3) ) % elem vice max of two 3x3 matrices
|
||||
|
||||
max ( A, [], 1 ) % row vice max
|
||||
max(A) % column vice max
|
||||
|
||||
A = magic(9)
|
||||
|
||||
sum(A,1)
|
||||
|
||||
A .* eye(9)
|
||||
|
||||
sum( sum( A.*eye(9))) % sum of diagonal elements
|
||||
|
||||
flipud( eye(9)) %flip up down
|
||||
|
||||
pinv(A) %pseudo inverse of A
|
||||
|
||||
|
||||
%============================
|
||||
t=[0:0.01:0.98];
|
||||
y1 = sin(2*pi*4*t)
|
||||
plot(t,y1);
|
||||
y2 = cos(2*pi*4*t)
|
||||
plot(t,y1);
|
||||
hold on;
|
||||
plot(t,y1,r);
|
||||
xlabel('time')
|
||||
ylabel('value')
|
||||
legend('sin','cos')
|
||||
title('my plot')
|
||||
print -dpng 'myPlot.png'
|
||||
close
|
||||
|
||||
|
||||
figure(1); plot(t,y1);
|
||||
figure(2); plot(t,y2);
|
||||
subplot(1,2,1);
|
||||
axis
|
||||
|
||||
A= magic(5);
|
||||
imagesc(A);
|
||||
imagesc(A),colorbar,colormap gray;
|
||||
|
||||
%============================
|
||||
v = zero(10,1)
|
||||
for i=1:10,
|
||||
v(i) = 2^i;
|
||||
end;
|
||||
while i <= 5,
|
||||
v(i) = 100;
|
||||
i = i+1;
|
||||
if i == 4, %elseif else
|
||||
break;
|
||||
end;
|
||||
end;
|
||||
|
||||
%put into a separate file with the same name
|
||||
function y = functionName( x )
|
||||
y = x^2;
|
||||
|
||||
function [y1,y2] = functionName( x )
|
||||
y1 = x^2;
|
||||
y2 = x^3;
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
%help eye
|
||||
|
||||
Reference in New Issue
Block a user