Merge branch 'master' of bitbucket.org:vishap/test

This commit is contained in:
2015-03-01 23:05:09 +04:00
1014 changed files with 4601 additions and 270 deletions

Binary file not shown.

View File

@@ -0,0 +1,22 @@
function J = computeCost(X, y, theta)
%COMPUTECOST Compute cost for linear regression
% J = COMPUTECOST(X, y, theta) computes the cost of using theta as the
% parameter for linear regression to fit the data points in X and y
% Initialize some useful values
m = length(y); % number of training examples
% You need to return the following variables correctly
J = 0;
% ====================== YOUR CODE HERE ======================
% Instructions: Compute the cost of a particular choice of theta
% You should set J to the cost.
%X = [ones(m,1) X];
J = sum( (X*theta - y) .^ 2 ) / (2*m);
% =========================================================================
end

View File

@@ -0,0 +1,22 @@
function J = computeCostMulti(X, y, theta)
%COMPUTECOSTMULTI Compute cost for linear regression with multiple variables
% J = COMPUTECOSTMULTI(X, y, theta) computes the cost of using theta as the
% parameter for linear regression to fit the data points in X and y
% Initialize some useful values
m = length(y); % number of training examples
% You need to return the following variables correctly
J = 0;
% ====================== YOUR CODE HERE ======================
% Instructions: Compute the cost of a particular choice of theta
% You should set J to the cost.
J = sum( (X*theta - y) .^ 2 ) / (2*m);
% =========================================================================
end

View File

@@ -0,0 +1,122 @@
%% Machine Learning Online Class - Exercise 1: Linear Regression
% Instructions
% ------------
%
% This file contains code that helps you get started on the
% linear exercise. You will need to complete the following functions
% in this exericse:
%
% warmUpExercise.m
% plotData.m
% gradientDescent.m
% computeCost.m
% gradientDescentMulti.m
% computeCostMulti.m
% featureNormalize.m
% normalEqn.m
%
% For this exercise, you will not need to change any code in this file,
% or any other files other than those mentioned above.
%
% x refers to the population size in 10,000s
% y refers to the profit in $10,000s
%
%% Initialization
clear ; close all; clc
%% ==================== Part 1: Basic Function ====================
% Complete warmUpExercise.m
fprintf('Running warmUpExercise ... \n');
fprintf('5x5 Identity Matrix: \n');
warmUpExercise()
fprintf('Program paused. Press enter to continue.\n');
pause;
%% ======================= Part 2: Plotting =======================
fprintf('Plotting Data ...\n')
data = load('ex1data1.txt');
X = data(:, 1); y = data(:, 2);
m = length(y); % number of training examples
% Plot Data
% Note: You have to complete the code in plotData.m
plotData(X, y);
fprintf('Program paused. Press enter to continue.\n');
pause;
%% =================== Part 3: Gradient descent ===================
fprintf('Running Gradient Descent ...\n')
X = [ones(m, 1), data(:,1)]; % Add a column of ones to x
theta = zeros(2, 1); % initialize fitting parameters
% Some gradient descent settings
iterations = 1500;
alpha = 0.01;
% compute and display initial cost
computeCost(X, y, theta)
% run gradient descent
theta = gradientDescent(X, y, theta, alpha, iterations);
% print theta to screen
fprintf('Theta found by gradient descent: ');
fprintf('%f %f \n', theta(1), theta(2));
% Plot the linear fit
hold on; % keep previous plot visible
plot(X(:,2), X*theta, '-')
legend('Training data', 'Linear regression')
hold off % don't overlay any more plots on this figure
% Predict values for population sizes of 35,000 and 70,000
predict1 = [1, 3.5] *theta;
fprintf('For population = 35,000, we predict a profit of %f\n',...
predict1*10000);
predict2 = [1, 7] * theta;
fprintf('For population = 70,000, we predict a profit of %f\n',...
predict2*10000);
fprintf('Program paused. Press enter to continue.\n');
pause;
%% ============= Part 4: Visualizing J(theta_0, theta_1) =============
fprintf('Visualizing J(theta_0, theta_1) ...\n')
% Grid over which we will calculate J
theta0_vals = linspace(-10, 10, 100);
theta1_vals = linspace(-1, 4, 100);
% initialize J_vals to a matrix of 0's
J_vals = zeros(length(theta0_vals), length(theta1_vals));
% Fill out J_vals
for i = 1:length(theta0_vals)
for j = 1:length(theta1_vals)
t = [theta0_vals(i); theta1_vals(j)];
J_vals(i,j) = computeCost(X, y, t);
end
end
% Because of the way meshgrids work in the surf command, we need to
% transpose J_vals before calling surf, or else the axes will be flipped
J_vals = J_vals';
% Surface plot
figure;
surf(theta0_vals, theta1_vals, J_vals)
xlabel('\theta_0'); ylabel('\theta_1');
% Contour plot
figure;
% Plot J_vals as 15 contours spaced logarithmically between 0.01 and 100
contour(theta0_vals, theta1_vals, J_vals, logspace(-2, 3, 20))
xlabel('\theta_0'); ylabel('\theta_1');
hold on;
plot(theta(1), theta(2), 'rx', 'MarkerSize', 10, 'LineWidth', 2);

View File

@@ -0,0 +1,159 @@
%% Machine Learning Online Class
% Exercise 1: Linear regression with multiple variables
%
% Instructions
% ------------
%
% This file contains code that helps you get started on the
% linear regression exercise.
%
% You will need to complete the following functions in this
% exericse:
%
% warmUpExercise.m
% plotData.m
% gradientDescent.m
% computeCost.m
% gradientDescentMulti.m
% computeCostMulti.m
% featureNormalize.m
% normalEqn.m
%
% For this part of the exercise, you will need to change some
% parts of the code below for various experiments (e.g., changing
% learning rates).
%
%% Initialization
%% ================ Part 1: Feature Normalization ================
%% Clear and Close Figures
clear ; close all; clc
fprintf('Loading data ...\n');
%% Load Data
data = load('ex1data2.txt');
X = data(:, 1:2);
y = data(:, 3);
m = length(y);
% Print out some data points
fprintf('First 10 examples from the dataset: \n');
fprintf(' x = [%.0f %.0f], y = %.0f \n', [X(1:10,:) y(1:10,:)]');
fprintf('Program paused. Press enter to continue.\n');
pause;
% Scale features and set them to zero mean
fprintf('Normalizing Features ...\n');
[X mu sigma] = featureNormalize(X);
% Add intercept term to X
X = [ones(m, 1) X];
%% ================ Part 2: Gradient Descent ================
% ====================== YOUR CODE HERE ======================
% Instructions: We have provided you with the following starter
% code that runs gradient descent with a particular
% learning rate (alpha).
%
% Your task is to first make sure that your functions -
% computeCost and gradientDescent already work with
% this starter code and support multiple variables.
%
% After that, try running gradient descent with
% different values of alpha and see which one gives
% you the best result.
%
% Finally, you should complete the code at the end
% to predict the price of a 1650 sq-ft, 3 br house.
%
% Hint: By using the 'hold on' command, you can plot multiple
% graphs on the same figure.
%
% Hint: At prediction, make sure you do the same feature normalization.
%
fprintf('Running gradient descent ...\n');
% Choose some alpha value
alpha = 0.01;
num_iters = 400;
% Init Theta and Run Gradient Descent
theta = zeros(3, 1);
[theta, J_history] = gradientDescentMulti(X, y, theta, alpha, num_iters);
% Plot the convergence graph
figure;
plot(1:numel(J_history), J_history, '-b', 'LineWidth', 2);
xlabel('Number of iterations');
ylabel('Cost J');
% Display gradient descent's result
fprintf('Theta computed from gradient descent: \n');
fprintf(' %f \n', theta);
fprintf('\n');
% Estimate the price of a 1650 sq-ft, 3 br house
% ====================== YOUR CODE HERE ======================
% Recall that the first column of X is all-ones. Thus, it does
% not need to be normalized.
price = 0; % You should change this
% ============================================================
fprintf(['Predicted price of a 1650 sq-ft, 3 br house ' ...
'(using gradient descent):\n $%f\n'], price);
fprintf('Program paused. Press enter to continue.\n');
pause;
%% ================ Part 3: Normal Equations ================
fprintf('Solving with normal equations...\n');
% ====================== YOUR CODE HERE ======================
% Instructions: The following code computes the closed form
% solution for linear regression using the normal
% equations. You should complete the code in
% normalEqn.m
%
% After doing so, you should complete this code
% to predict the price of a 1650 sq-ft, 3 br house.
%
%% Load Data
data = csvread('ex1data2.txt');
X = data(:, 1:2);
y = data(:, 3);
m = length(y);
% Add intercept term to X
X = [ones(m, 1) X];
% Calculate the parameters from the normal equation
theta = normalEqn(X, y);
% Display normal equation's result
fprintf('Theta computed from the normal equations: \n');
fprintf(' %f \n', theta);
fprintf('\n');
% Estimate the price of a 1650 sq-ft, 3 br house
% ====================== YOUR CODE HERE ======================
price = 0; % You should change this
% ============================================================
fprintf(['Predicted price of a 1650 sq-ft, 3 br house ' ...
'(using normal equations):\n $%f\n'], price);

View File

@@ -0,0 +1,97 @@
6.1101,17.592
5.5277,9.1302
8.5186,13.662
7.0032,11.854
5.8598,6.8233
8.3829,11.886
7.4764,4.3483
8.5781,12
6.4862,6.5987
5.0546,3.8166
5.7107,3.2522
14.164,15.505
5.734,3.1551
8.4084,7.2258
5.6407,0.71618
5.3794,3.5129
6.3654,5.3048
5.1301,0.56077
6.4296,3.6518
7.0708,5.3893
6.1891,3.1386
20.27,21.767
5.4901,4.263
6.3261,5.1875
5.5649,3.0825
18.945,22.638
12.828,13.501
10.957,7.0467
13.176,14.692
22.203,24.147
5.2524,-1.22
6.5894,5.9966
9.2482,12.134
5.8918,1.8495
8.2111,6.5426
7.9334,4.5623
8.0959,4.1164
5.6063,3.3928
12.836,10.117
6.3534,5.4974
5.4069,0.55657
6.8825,3.9115
11.708,5.3854
5.7737,2.4406
7.8247,6.7318
7.0931,1.0463
5.0702,5.1337
5.8014,1.844
11.7,8.0043
5.5416,1.0179
7.5402,6.7504
5.3077,1.8396
7.4239,4.2885
7.6031,4.9981
6.3328,1.4233
6.3589,-1.4211
6.2742,2.4756
5.6397,4.6042
9.3102,3.9624
9.4536,5.4141
8.8254,5.1694
5.1793,-0.74279
21.279,17.929
14.908,12.054
18.959,17.054
7.2182,4.8852
8.2951,5.7442
10.236,7.7754
5.4994,1.0173
20.341,20.992
10.136,6.6799
7.3345,4.0259
6.0062,1.2784
7.2259,3.3411
5.0269,-2.6807
6.5479,0.29678
7.5386,3.8845
5.0365,5.7014
10.274,6.7526
5.1077,2.0576
5.7292,0.47953
5.1884,0.20421
6.3557,0.67861
9.7687,7.5435
6.5159,5.3436
8.5172,4.2415
9.1802,6.7981
6.002,0.92695
5.5204,0.152
5.0594,2.8214
5.7077,1.8451
7.6366,4.2959
5.8707,7.2029
5.3054,1.9869
8.2934,0.14454
13.394,9.0551
5.4369,0.61705

View File

@@ -0,0 +1,47 @@
2104,3,399900
1600,3,329900
2400,3,369000
1416,2,232000
3000,4,539900
1985,4,299900
1534,3,314900
1427,3,198999
1380,3,212000
1494,3,242500
1940,4,239999
2000,3,347000
1890,3,329999
4478,5,699900
1268,3,259900
2300,4,449900
1320,2,299900
1236,3,199900
2609,4,499998
3031,4,599000
1767,3,252900
1888,2,255000
1604,3,242900
1962,4,259900
3890,3,573900
1100,3,249900
1458,3,464500
2526,3,469000
2200,3,475000
2637,3,299900
1839,2,349900
1000,1,169900
2040,4,314900
3137,3,579900
1811,4,285900
1437,3,249900
1239,3,229900
2132,4,345000
4215,4,549000
2162,4,287000
1664,2,368500
2238,3,329900
2567,4,314000
1200,3,299000
852,2,179900
1852,4,299900
1203,3,239500

View File

@@ -0,0 +1,39 @@
function [X_norm, mu, sigma] = featureNormalize(X)
%FEATURENORMALIZE Normalizes the features in X
% FEATURENORMALIZE(X) returns a normalized version of X where
% the mean value of each feature is 0 and the standard deviation
% is 1. This is often a good preprocessing step to do when
% working with learning algorithms.
% You need to set these values correctly
X_norm = X;
mu = zeros(1, size(X, 2));
sigma = zeros(1, size(X, 2));
% ====================== YOUR CODE HERE ======================
% Instructions: First, for each feature dimension, compute the mean
% of the feature and subtract it from the dataset,
% storing the mean value in mu. Next, compute the
% standard deviation of each feature and divide
% each feature by it's standard deviation, storing
% the standard deviation in sigma.
%
% Note that X is a matrix where each column is a
% feature and each row is an example. You need
% to perform the normalization separately for
% each feature.
%
% Hint: You might find the 'mean' and 'std' functions useful.
%
mu = mean(X);
sigma = std(X);
X_norm = (X - repmat( mu, size(X,1), 1 )) ./ repmat( sigma, size(X,1), 1 );
% ============================================================
end

View File

@@ -0,0 +1,33 @@
function [theta, J_history] = gradientDescent(X, y, theta, alpha, num_iters)
%GRADIENTDESCENT Performs gradient descent to learn theta
% theta = GRADIENTDESENT(X, y, theta, alpha, num_iters) updates theta by
% taking num_iters gradient steps with learning rate alpha
% Initialize some useful values
m = length(y); % number of training examples
J_history = zeros(num_iters, 1);
for iter = 1:num_iters
% ====================== YOUR CODE HERE ======================
% Instructions: Perform a single gradient step on the parameter vector
% theta.
%
% Hint: While debugging, it can be useful to print out the values
% of the cost function (computeCost) and gradient here.
%
theta = theta - alpha * (X' * (X*theta-y) / m);
% ============================================================
% Save the cost J in every iteration
J_history(iter) = computeCost(X, y, theta);
end
end

View File

@@ -0,0 +1,37 @@
function [theta, J_history] = gradientDescentMulti(X, y, theta, alpha, num_iters)
%GRADIENTDESCENTMULTI Performs gradient descent to learn theta
% theta = GRADIENTDESCENTMULTI(x, y, theta, alpha, num_iters) updates theta by
% taking num_iters gradient steps with learning rate alpha
% Initialize some useful values
m = length(y); % number of training examples
J_history = zeros(num_iters, 1);
for iter = 1:num_iters
% ====================== YOUR CODE HERE ======================
% Instructions: Perform a single gradient step on the parameter vector
% theta.
%
% Hint: While debugging, it can be useful to print out the values
% of the cost function (computeCostMulti) and gradient here.
%
theta = theta - alpha * (X' * (X*theta-y) / m);
% ============================================================
% Save the cost J in every iteration
J_history(iter) = computeCostMulti(X, y, theta);
end
end

View File

@@ -0,0 +1,23 @@
function [theta] = normalEqn(X, y)
%NORMALEQN Computes the closed-form solution to linear regression
% NORMALEQN(X,y) computes the closed-form solution to linear
% regression using the normal equations.
theta = zeros(size(X, 2), 1);
% ====================== YOUR CODE HERE ======================
% Instructions: Complete the code to compute the closed form solution
% to linear regression and put the result in theta.
%
% ---------------------- Sample Solution ----------------------
theta = pinv(X'*X)*X'*y;
% -------------------------------------------------------------
% ============================================================
end

View File

@@ -0,0 +1,26 @@
function plotData(x, y)
%PLOTDATA Plots the data points x and y into a new figure
% PLOTDATA(x,y) plots the data points and gives the figure axes labels of
% population and profit.
% ====================== YOUR CODE HERE ======================
% Instructions: Plot the training data into a figure using the
% "figure" and "plot" commands. Set the axes labels using
% the "xlabel" and "ylabel" commands. Assume the
% population and revenue data have been passed in
% as the x and y arguments of this function.
%
% Hint: You can use the 'rx' option with plot to have the markers
% appear as red crosses. Furthermore, you can make the
% markers larger by using plot(..., 'rx', 'MarkerSize', 10);
figure; % open a new figure window
% ============================================================
end

View File

@@ -0,0 +1,577 @@
function submit(partId, webSubmit)
%SUBMIT Submit your code and output to the ml-class servers
% SUBMIT() will connect to the ml-class server and submit your solution
fprintf('==\n== [ml-class] Submitting Solutions | Programming Exercise %s\n==\n', ...
homework_id());
if ~exist('partId', 'var') || isempty(partId)
partId = promptPart();
end
if ~exist('webSubmit', 'var') || isempty(webSubmit)
webSubmit = 0; % submit directly by default
end
% Check valid partId
partNames = validParts();
if ~isValidPartId(partId)
fprintf('!! Invalid homework part selected.\n');
fprintf('!! Expected an integer from 1 to %d.\n', numel(partNames) + 1);
fprintf('!! Submission Cancelled\n');
return
end
if ~exist('ml_login_data.mat','file')
[login password] = loginPrompt();
save('ml_login_data.mat','login','password');
else
load('ml_login_data.mat');
[login password] = quickLogin(login, password);
save('ml_login_data.mat','login','password');
end
if isempty(login)
fprintf('!! Submission Cancelled\n');
return
end
fprintf('\n== Connecting to ml-class ... ');
if exist('OCTAVE_VERSION')
fflush(stdout);
end
% Setup submit list
if partId == numel(partNames) + 1
submitParts = 1:numel(partNames);
else
submitParts = [partId];
end
for s = 1:numel(submitParts)
thisPartId = submitParts(s);
if (~webSubmit) % submit directly to server
[login, ch, signature, auxstring] = getChallenge(login, thisPartId);
if isempty(login) || isempty(ch) || isempty(signature)
% Some error occured, error string in first return element.
fprintf('\n!! Error: %s\n\n', login);
return
end
% Attempt Submission with Challenge
ch_resp = challengeResponse(login, password, ch);
[result, str] = submitSolution(login, ch_resp, thisPartId, ...
output(thisPartId, auxstring), source(thisPartId), signature);
partName = partNames{thisPartId};
fprintf('\n== [ml-class] Submitted Assignment %s - Part %d - %s\n', ...
homework_id(), thisPartId, partName);
fprintf('== %s\n', strtrim(str));
if exist('OCTAVE_VERSION')
fflush(stdout);
end
else
[result] = submitSolutionWeb(login, thisPartId, output(thisPartId), ...
source(thisPartId));
result = base64encode(result);
fprintf('\nSave as submission file [submit_ex%s_part%d.txt (enter to accept default)]:', ...
homework_id(), thisPartId);
saveAsFile = input('', 's');
if (isempty(saveAsFile))
saveAsFile = sprintf('submit_ex%s_part%d.txt', homework_id(), thisPartId);
end
fid = fopen(saveAsFile, 'w');
if (fid)
fwrite(fid, result);
fclose(fid);
fprintf('\nSaved your solutions to %s.\n\n', saveAsFile);
fprintf(['You can now submit your solutions through the web \n' ...
'form in the programming exercises. Select the corresponding \n' ...
'programming exercise to access the form.\n']);
else
fprintf('Unable to save to %s\n\n', saveAsFile);
fprintf(['You can create a submission file by saving the \n' ...
'following text in a file: (press enter to continue)\n\n']);
pause;
fprintf(result);
end
end
end
end
% ================== CONFIGURABLES FOR EACH HOMEWORK ==================
function id = homework_id()
id = '1';
end
function [partNames] = validParts()
partNames = { 'Warm up exercise ', ...
'Computing Cost (for one variable)', ...
'Gradient Descent (for one variable)', ...
'Feature Normalization', ...
'Computing Cost (for multiple variables)', ...
'Gradient Descent (for multiple variables)', ...
'Normal Equations'};
end
function srcs = sources()
% Separated by part
srcs = { { 'warmUpExercise.m' }, ...
{ 'computeCost.m' }, ...
{ 'gradientDescent.m' }, ...
{ 'featureNormalize.m' }, ...
{ 'computeCostMulti.m' }, ...
{ 'gradientDescentMulti.m' }, ...
{ 'normalEqn.m' }, ...
};
end
function out = output(partId, auxstring)
% Random Test Cases
X1 = [ones(20,1) (exp(1) + exp(2) * (0.1:0.1:2))'];
Y1 = X1(:,2) + sin(X1(:,1)) + cos(X1(:,2));
X2 = [X1 X1(:,2).^0.5 X1(:,2).^0.25];
Y2 = Y1.^0.5 + Y1;
if partId == 1
out = sprintf('%0.5f ', warmUpExercise());
elseif partId == 2
out = sprintf('%0.5f ', computeCost(X1, Y1, [0.5 -0.5]'));
elseif partId == 3
out = sprintf('%0.5f ', gradientDescent(X1, Y1, [0.5 -0.5]', 0.01, 10));
elseif partId == 4
out = sprintf('%0.5f ', featureNormalize(X2(:,2:4)));
elseif partId == 5
out = sprintf('%0.5f ', computeCostMulti(X2, Y2, [0.1 0.2 0.3 0.4]'));
elseif partId == 6
out = sprintf('%0.5f ', gradientDescentMulti(X2, Y2, [-0.1 -0.2 -0.3 -0.4]', 0.01, 10));
elseif partId == 7
out = sprintf('%0.5f ', normalEqn(X2, Y2));
end
end
% ====================== SERVER CONFIGURATION ===========================
% ***************** REMOVE -staging WHEN YOU DEPLOY *********************
function url = site_url()
url = 'http://class.coursera.org/ml-008';
end
function url = challenge_url()
url = [site_url() '/assignment/challenge'];
end
function url = submit_url()
url = [site_url() '/assignment/submit'];
end
% ========================= CHALLENGE HELPERS =========================
function src = source(partId)
src = '';
src_files = sources();
if partId <= numel(src_files)
flist = src_files{partId};
for i = 1:numel(flist)
fid = fopen(flist{i});
if (fid == -1)
error('Error opening %s (is it missing?)', flist{i});
end
line = fgets(fid);
while ischar(line)
src = [src line];
line = fgets(fid);
end
fclose(fid);
src = [src '||||||||'];
end
end
end
function ret = isValidPartId(partId)
partNames = validParts();
ret = (~isempty(partId)) && (partId >= 1) && (partId <= numel(partNames) + 1);
end
function partId = promptPart()
fprintf('== Select which part(s) to submit:\n');
partNames = validParts();
srcFiles = sources();
for i = 1:numel(partNames)
fprintf('== %d) %s [', i, partNames{i});
fprintf(' %s ', srcFiles{i}{:});
fprintf(']\n');
end
fprintf('== %d) All of the above \n==\nEnter your choice [1-%d]: ', ...
numel(partNames) + 1, numel(partNames) + 1);
selPart = input('', 's');
partId = str2num(selPart);
if ~isValidPartId(partId)
partId = -1;
end
end
function [email,ch,signature,auxstring] = getChallenge(email, part)
str = urlread(challenge_url(), 'post', {'email_address', email, 'assignment_part_sid', [homework_id() '-' num2str(part)], 'response_encoding', 'delim'});
str = strtrim(str);
r = struct;
while(numel(str) > 0)
[f, str] = strtok (str, '|');
[v, str] = strtok (str, '|');
r = setfield(r, f, v);
end
email = getfield(r, 'email_address');
ch = getfield(r, 'challenge_key');
signature = getfield(r, 'state');
auxstring = getfield(r, 'challenge_aux_data');
end
function [result, str] = submitSolutionWeb(email, part, output, source)
result = ['{"assignment_part_sid":"' base64encode([homework_id() '-' num2str(part)], '') '",' ...
'"email_address":"' base64encode(email, '') '",' ...
'"submission":"' base64encode(output, '') '",' ...
'"submission_aux":"' base64encode(source, '') '"' ...
'}'];
str = 'Web-submission';
end
function [result, str] = submitSolution(email, ch_resp, part, output, ...
source, signature)
params = {'assignment_part_sid', [homework_id() '-' num2str(part)], ...
'email_address', email, ...
'submission', base64encode(output, ''), ...
'submission_aux', base64encode(source, ''), ...
'challenge_response', ch_resp, ...
'state', signature};
str = urlread(submit_url(), 'post', params);
% Parse str to read for success / failure
result = 0;
end
% =========================== LOGIN HELPERS ===========================
function [login password] = loginPrompt()
% Prompt for password
[login password] = basicPrompt();
if isempty(login) || isempty(password)
login = []; password = [];
end
end
function [login password] = basicPrompt()
login = input('Login (Email address): ', 's');
password = input('Password: ', 's');
end
function [login password] = quickLogin(login,password)
disp(['You are currently logged in as ' login '.']);
cont_token = input('Is this you? (y/n - type n to reenter password)','s');
if(isempty(cont_token) || cont_token(1)=='Y'||cont_token(1)=='y')
return;
else
[login password] = loginPrompt();
end
end
function [str] = challengeResponse(email, passwd, challenge)
str = sha1([challenge passwd]);
end
% =============================== SHA-1 ================================
function hash = sha1(str)
% Initialize variables
h0 = uint32(1732584193);
h1 = uint32(4023233417);
h2 = uint32(2562383102);
h3 = uint32(271733878);
h4 = uint32(3285377520);
% Convert to word array
strlen = numel(str);
% Break string into chars and append the bit 1 to the message
mC = [double(str) 128];
mC = [mC zeros(1, 4-mod(numel(mC), 4), 'uint8')];
numB = strlen * 8;
if exist('idivide')
numC = idivide(uint32(numB + 65), 512, 'ceil');
else
numC = ceil(double(numB + 65)/512);
end
numW = numC * 16;
mW = zeros(numW, 1, 'uint32');
idx = 1;
for i = 1:4:strlen + 1
mW(idx) = bitor(bitor(bitor( ...
bitshift(uint32(mC(i)), 24), ...
bitshift(uint32(mC(i+1)), 16)), ...
bitshift(uint32(mC(i+2)), 8)), ...
uint32(mC(i+3)));
idx = idx + 1;
end
% Append length of message
mW(numW - 1) = uint32(bitshift(uint64(numB), -32));
mW(numW) = uint32(bitshift(bitshift(uint64(numB), 32), -32));
% Process the message in successive 512-bit chs
for cId = 1 : double(numC)
cSt = (cId - 1) * 16 + 1;
cEnd = cId * 16;
ch = mW(cSt : cEnd);
% Extend the sixteen 32-bit words into eighty 32-bit words
for j = 17 : 80
ch(j) = ch(j - 3);
ch(j) = bitxor(ch(j), ch(j - 8));
ch(j) = bitxor(ch(j), ch(j - 14));
ch(j) = bitxor(ch(j), ch(j - 16));
ch(j) = bitrotate(ch(j), 1);
end
% Initialize hash value for this ch
a = h0;
b = h1;
c = h2;
d = h3;
e = h4;
% Main loop
for i = 1 : 80
if(i >= 1 && i <= 20)
f = bitor(bitand(b, c), bitand(bitcmp(b), d));
k = uint32(1518500249);
elseif(i >= 21 && i <= 40)
f = bitxor(bitxor(b, c), d);
k = uint32(1859775393);
elseif(i >= 41 && i <= 60)
f = bitor(bitor(bitand(b, c), bitand(b, d)), bitand(c, d));
k = uint32(2400959708);
elseif(i >= 61 && i <= 80)
f = bitxor(bitxor(b, c), d);
k = uint32(3395469782);
end
t = bitrotate(a, 5);
t = bitadd(t, f);
t = bitadd(t, e);
t = bitadd(t, k);
t = bitadd(t, ch(i));
e = d;
d = c;
c = bitrotate(b, 30);
b = a;
a = t;
end
h0 = bitadd(h0, a);
h1 = bitadd(h1, b);
h2 = bitadd(h2, c);
h3 = bitadd(h3, d);
h4 = bitadd(h4, e);
end
hash = reshape(dec2hex(double([h0 h1 h2 h3 h4]), 8)', [1 40]);
hash = lower(hash);
end
function ret = bitadd(iA, iB)
ret = double(iA) + double(iB);
ret = bitset(ret, 33, 0);
ret = uint32(ret);
end
function ret = bitrotate(iA, places)
t = bitshift(iA, places - 32);
ret = bitshift(iA, places);
ret = bitor(ret, t);
end
% =========================== Base64 Encoder ============================
% Thanks to Peter John Acklam
%
function y = base64encode(x, eol)
%BASE64ENCODE Perform base64 encoding on a string.
%
% BASE64ENCODE(STR, EOL) encode the given string STR. EOL is the line ending
% sequence to use; it is optional and defaults to '\n' (ASCII decimal 10).
% The returned encoded string is broken into lines of no more than 76
% characters each, and each line will end with EOL unless it is empty. Let
% EOL be empty if you do not want the encoded string broken into lines.
%
% STR and EOL don't have to be strings (i.e., char arrays). The only
% requirement is that they are vectors containing values in the range 0-255.
%
% This function may be used to encode strings into the Base64 encoding
% specified in RFC 2045 - MIME (Multipurpose Internet Mail Extensions). The
% Base64 encoding is designed to represent arbitrary sequences of octets in a
% form that need not be humanly readable. A 65-character subset
% ([A-Za-z0-9+/=]) of US-ASCII is used, enabling 6 bits to be represented per
% printable character.
%
% Examples
% --------
%
% If you want to encode a large file, you should encode it in chunks that are
% a multiple of 57 bytes. This ensures that the base64 lines line up and
% that you do not end up with padding in the middle. 57 bytes of data fills
% one complete base64 line (76 == 57*4/3):
%
% If ifid and ofid are two file identifiers opened for reading and writing,
% respectively, then you can base64 encode the data with
%
% while ~feof(ifid)
% fwrite(ofid, base64encode(fread(ifid, 60*57)));
% end
%
% or, if you have enough memory,
%
% fwrite(ofid, base64encode(fread(ifid)));
%
% See also BASE64DECODE.
% Author: Peter John Acklam
% Time-stamp: 2004-02-03 21:36:56 +0100
% E-mail: pjacklam@online.no
% URL: http://home.online.no/~pjacklam
if isnumeric(x)
x = num2str(x);
end
% make sure we have the EOL value
if nargin < 2
eol = sprintf('\n');
else
if sum(size(eol) > 1) > 1
error('EOL must be a vector.');
end
if any(eol(:) > 255)
error('EOL can not contain values larger than 255.');
end
end
if sum(size(x) > 1) > 1
error('STR must be a vector.');
end
x = uint8(x);
eol = uint8(eol);
ndbytes = length(x); % number of decoded bytes
nchunks = ceil(ndbytes / 3); % number of chunks/groups
nebytes = 4 * nchunks; % number of encoded bytes
% add padding if necessary, to make the length of x a multiple of 3
if rem(ndbytes, 3)
x(end+1 : 3*nchunks) = 0;
end
x = reshape(x, [3, nchunks]); % reshape the data
y = repmat(uint8(0), 4, nchunks); % for the encoded data
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Split up every 3 bytes into 4 pieces
%
% aaaaaabb bbbbcccc ccdddddd
%
% to form
%
% 00aaaaaa 00bbbbbb 00cccccc 00dddddd
%
y(1,:) = bitshift(x(1,:), -2); % 6 highest bits of x(1,:)
y(2,:) = bitshift(bitand(x(1,:), 3), 4); % 2 lowest bits of x(1,:)
y(2,:) = bitor(y(2,:), bitshift(x(2,:), -4)); % 4 highest bits of x(2,:)
y(3,:) = bitshift(bitand(x(2,:), 15), 2); % 4 lowest bits of x(2,:)
y(3,:) = bitor(y(3,:), bitshift(x(3,:), -6)); % 2 highest bits of x(3,:)
y(4,:) = bitand(x(3,:), 63); % 6 lowest bits of x(3,:)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Now perform the following mapping
%
% 0 - 25 -> A-Z
% 26 - 51 -> a-z
% 52 - 61 -> 0-9
% 62 -> +
% 63 -> /
%
% We could use a mapping vector like
%
% ['A':'Z', 'a':'z', '0':'9', '+/']
%
% but that would require an index vector of class double.
%
z = repmat(uint8(0), size(y));
i = y <= 25; z(i) = 'A' + double(y(i));
i = 26 <= y & y <= 51; z(i) = 'a' - 26 + double(y(i));
i = 52 <= y & y <= 61; z(i) = '0' - 52 + double(y(i));
i = y == 62; z(i) = '+';
i = y == 63; z(i) = '/';
y = z;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Add padding if necessary.
%
npbytes = 3 * nchunks - ndbytes; % number of padding bytes
if npbytes
y(end-npbytes+1 : end) = '='; % '=' is used for padding
end
if isempty(eol)
% reshape to a row vector
y = reshape(y, [1, nebytes]);
else
nlines = ceil(nebytes / 76); % number of lines
neolbytes = length(eol); % number of bytes in eol string
% pad data so it becomes a multiple of 76 elements
y = [y(:) ; zeros(76 * nlines - numel(y), 1)];
y(nebytes + 1 : 76 * nlines) = 0;
y = reshape(y, 76, nlines);
% insert eol strings
eol = eol(:);
y(end + 1 : end + neolbytes, :) = eol(:, ones(1, nlines));
% remove padding, but keep the last eol string
m = nebytes + neolbytes * (nlines - 1);
n = (76+neolbytes)*nlines - neolbytes;
y(m+1 : n) = '';
% extract and reshape to row vector
y = reshape(y, 1, m+neolbytes);
end
% output is a character array
y = char(y);
end

View File

@@ -0,0 +1,20 @@
% submitWeb Creates files from your code and output for web submission.
%
% If the submit function does not work for you, use the web-submission mechanism.
% Call this function to produce a file for the part you wish to submit. Then,
% submit the file to the class servers using the "Web Submission" button on the
% Programming Exercises page on the course website.
%
% You should call this function without arguments (submitWeb), to receive
% an interactive prompt for submission; optionally you can call it with the partID
% if you so wish. Make sure your working directory is set to the directory
% containing the submitWeb.m file and your assignment files.
function submitWeb(partId)
if ~exist('partId', 'var') || isempty(partId)
partId = [];
end
submit(partId, 1);
end

View File

@@ -0,0 +1,21 @@
function A = warmUpExercise()
%WARMUPEXERCISE Example function in octave
% A = WARMUPEXERCISE() is an example function that returns the 5x5 identity matrix
A = [];
% ============= YOUR CODE HERE ==============
% Instructions: Return the 5x5 identity matrix
% In octave, we return values by defining which variables
% represent the return values (at the top of the file)
% and then set them accordingly.
A = eye(5);
% ===========================================
end

Binary file not shown.

View File

@@ -0,0 +1,30 @@
function [J, grad] = costFunction(theta, X, y)
%COSTFUNCTION Compute cost and gradient for logistic regression
% J = COSTFUNCTION(theta, X, y) computes the cost of using theta as the
% parameter for logistic regression and the gradient of the cost
% w.r.t. to the parameters.
% Initialize some useful values
m = length(y); % number of training examples
% You need to return the following variables correctly
J = 0;
grad = zeros(size(theta));
% ====================== YOUR CODE HERE ======================
% Instructions: Compute the cost of a particular choice of theta.
% You should set J to the cost.
% Compute the partial derivatives and set grad to the partial
% derivatives of the cost w.r.t. each parameter in theta
%
% Note: grad should have the same dimensions as theta
%
h = sigmoid( X*theta );
o = ones(size(y));
J = sum( y .* log(h) + (o-y) .* log(o-h) ) / (-m);
grad = (X'*(h - y)) / m;
% =============================================================
end

View File

@@ -0,0 +1,30 @@
function [J, grad] = costFunctionReg(theta, X, y, lambda)
%COSTFUNCTIONREG Compute cost and gradient for logistic regression with regularization
% J = COSTFUNCTIONREG(theta, X, y, lambda) computes the cost of using
% theta as the parameter for regularized logistic regression and the
% gradient of the cost w.r.t. to the parameters.
% Initialize some useful values
m = length(y); % number of training examples
% You need to return the following variables correctly
J = 0;
grad = zeros(size(theta));
% ====================== YOUR CODE HERE ======================
% Instructions: Compute the cost of a particular choice of theta.
% You should set J to the cost.
% Compute the partial derivatives and set grad to the partial
% derivatives of the cost w.r.t. each parameter in theta
h = sigmoid( X*theta );
o = ones(size(y));
reg = theta;
reg(1) = 0;
J = sum( y .* log(h) + (o-y) .* log(o-h) ) / (-m) + (lambda/(2*m))*sum(reg.^2);
grad = (X'*(h - y)) / m + (lambda/m) * reg;
% =============================================================
end

View File

@@ -0,0 +1,135 @@
%% Machine Learning Online Class - Exercise 2: Logistic Regression
%
% Instructions
% ------------
%
% This file contains code that helps you get started on the logistic
% regression exercise. You will need to complete the following functions
% in this exericse:
%
% sigmoid.m
% costFunction.m
% predict.m
% costFunctionReg.m
%
% For this exercise, you will not need to change any code in this file,
% or any other files other than those mentioned above.
%
%% Initialization
clear ; close all; clc
%% Load Data
% The first two columns contains the exam scores and the third column
% contains the label.
data = load('ex2data1.txt');
X = data(:, [1, 2]); y = data(:, 3);
%% ==================== Part 1: Plotting ====================
% We start the exercise by first plotting the data to understand the
% the problem we are working with.
fprintf(['Plotting data with + indicating (y = 1) examples and o ' ...
'indicating (y = 0) examples.\n']);
%%plotData(X, y);
% Put some labels
%%hold on;
% Labels and Legend
%%xlabel('Exam 1 score')
%%ylabel('Exam 2 score')
% Specified in plot order
%%legend('Admitted', 'Not admitted')
%%hold off;
fprintf('\nProgram paused. Press enter to continue.\n');
%%pause;
%% ============ Part 2: Compute Cost and Gradient ============
% In this part of the exercise, you will implement the cost and gradient
% for logistic regression. You neeed to complete the code in
% costFunction.m
% Setup the data matrix appropriately, and add ones for the intercept term
[m, n] = size(X);
% Add intercept term to x and X_test
X = [ones(m, 1) X];
% Initialize fitting parameters
initial_theta = zeros(n + 1, 1);
% Compute and display initial cost and gradient
[cost, grad] = costFunction(initial_theta, X, y);
fprintf('Cost at initial theta (zeros): %f\n', cost);
fprintf('Gradient at initial theta (zeros): \n');
fprintf(' %f \n', grad);
fprintf('\nProgram paused. Press enter to continue.\n');
pause;
%% ============= Part 3: Optimizing using fminunc =============
% In this exercise, you will use a built-in function (fminunc) to find the
% optimal parameters theta.
% Set options for fminunc
options = optimset('GradObj', 'on', 'MaxIter', 400);
% Run fminunc to obtain the optimal theta
% This function will return theta and the cost
[theta, cost] = ...
fminunc(@(t)(costFunction(t, X, y)), initial_theta, options);
% Print theta to screen
fprintf('Cost at theta found by fminunc: %f\n', cost);
fprintf('theta: \n');
fprintf(' %f \n', theta);
% Plot Boundary
plotDecisionBoundary(theta, X, y);
% Put some labels
hold on;
% Labels and Legend
xlabel('Exam 1 score')
ylabel('Exam 2 score')
% Specified in plot order
legend('Admitted', 'Not admitted')
hold off;
fprintf('\nProgram paused. Press enter to continue.\n');
pause;
%% ============== Part 4: Predict and Accuracies ==============
% After learning the parameters, you'll like to use it to predict the outcomes
% on unseen data. In this part, you will use the logistic regression model
% to predict the probability that a student with score 45 on exam 1 and
% score 85 on exam 2 will be admitted.
%
% Furthermore, you will compute the training and test set accuracies of
% our model.
%
% Your task is to complete the code in predict.m
% Predict probability for a student with score 45 on exam 1
% and score 85 on exam 2
prob = sigmoid([1 45 85] * theta);
fprintf(['For a student with scores 45 and 85, we predict an admission ' ...
'probability of %f\n\n'], prob);
% Compute accuracy on our training set
p = predict(theta, X);
fprintf('Train Accuracy: %f\n', mean(double(p == y)) * 100);
fprintf('\nProgram paused. Press enter to continue.\n');
pause;

View File

@@ -0,0 +1,116 @@
%% Machine Learning Online Class - Exercise 2: Logistic Regression
%
% Instructions
% ------------
%
% This file contains code that helps you get started on the second part
% of the exercise which covers regularization with logistic regression.
%
% You will need to complete the following functions in this exericse:
%
% sigmoid.m
% costFunction.m
% predict.m
% costFunctionReg.m
%
% For this exercise, you will not need to change any code in this file,
% or any other files other than those mentioned above.
%
%% Initialization
clear ; close all; clc
%% Load Data
% The first two columns contains the X values and the third column
% contains the label (y).
data = load('ex2data2.txt');
X = data(:, [1, 2]); y = data(:, 3);
plotData(X, y);
% Put some labels
hold on;
% Labels and Legend
xlabel('Microchip Test 1')
ylabel('Microchip Test 2')
% Specified in plot order
legend('y = 1', 'y = 0')
hold off;
%% =========== Part 1: Regularized Logistic Regression ============
% In this part, you are given a dataset with data points that are not
% linearly separable. However, you would still like to use logistic
% regression to classify the data points.
%
% To do so, you introduce more features to use -- in particular, you add
% polynomial features to our data matrix (similar to polynomial
% regression).
%
% Add Polynomial Features
% Note that mapFeature also adds a column of ones for us, so the intercept
% term is handled
X = mapFeature(X(:,1), X(:,2));
% Initialize fitting parameters
initial_theta = zeros(size(X, 2), 1);
% Set regularization parameter lambda to 1
lambda = 1;
% Compute and display initial cost and gradient for regularized logistic
% regression
[cost, grad] = costFunctionReg(initial_theta, X, y, lambda);
fprintf('Cost at initial theta (zeros): %f\n', cost);
fprintf('\nProgram paused. Press enter to continue.\n');
pause;
%% ============= Part 2: Regularization and Accuracies =============
% Optional Exercise:
% In this part, you will get to try different values of lambda and
% see how regularization affects the decision coundart
%
% Try the following values of lambda (0, 1, 10, 100).
%
% How does the decision boundary change when you vary lambda? How does
% the training set accuracy vary?
%
% Initialize fitting parameters
initial_theta = zeros(size(X, 2), 1);
% Set regularization parameter lambda to 1 (you should vary this)
lambda = 1;
% Set Options
options = optimset('GradObj', 'on', 'MaxIter', 400);
% Optimize
[theta, J, exit_flag] = ...
fminunc(@(t)(costFunctionReg(t, X, y, lambda)), initial_theta, options);
% Plot Boundary
plotDecisionBoundary(theta, X, y);
hold on;
title(sprintf('lambda = %g', lambda))
% Labels and Legend
xlabel('Microchip Test 1')
ylabel('Microchip Test 2')
legend('y = 1', 'y = 0', 'Decision boundary')
hold off;
% Compute accuracy on our training set
p = predict(theta, X);
fprintf('Train Accuracy: %f\n', mean(double(p == y)) * 100);

View File

@@ -0,0 +1,100 @@
34.62365962451697,78.0246928153624,0
30.28671076822607,43.89499752400101,0
35.84740876993872,72.90219802708364,0
60.18259938620976,86.30855209546826,1
79.0327360507101,75.3443764369103,1
45.08327747668339,56.3163717815305,0
61.10666453684766,96.51142588489624,1
75.02474556738889,46.55401354116538,1
76.09878670226257,87.42056971926803,1
84.43281996120035,43.53339331072109,1
95.86155507093572,38.22527805795094,0
75.01365838958247,30.60326323428011,0
82.30705337399482,76.48196330235604,1
69.36458875970939,97.71869196188608,1
39.53833914367223,76.03681085115882,0
53.9710521485623,89.20735013750205,1
69.07014406283025,52.74046973016765,1
67.94685547711617,46.67857410673128,0
70.66150955499435,92.92713789364831,1
76.97878372747498,47.57596364975532,1
67.37202754570876,42.83843832029179,0
89.67677575072079,65.79936592745237,1
50.534788289883,48.85581152764205,0
34.21206097786789,44.20952859866288,0
77.9240914545704,68.9723599933059,1
62.27101367004632,69.95445795447587,1
80.1901807509566,44.82162893218353,1
93.114388797442,38.80067033713209,0
61.83020602312595,50.25610789244621,0
38.78580379679423,64.99568095539578,0
61.379289447425,72.80788731317097,1
85.40451939411645,57.05198397627122,1
52.10797973193984,63.12762376881715,0
52.04540476831827,69.43286012045222,1
40.23689373545111,71.16774802184875,0
54.63510555424817,52.21388588061123,0
33.91550010906887,98.86943574220611,0
64.17698887494485,80.90806058670817,1
74.78925295941542,41.57341522824434,0
34.1836400264419,75.2377203360134,0
83.90239366249155,56.30804621605327,1
51.54772026906181,46.85629026349976,0
94.44336776917852,65.56892160559052,1
82.36875375713919,40.61825515970618,0
51.04775177128865,45.82270145776001,0
62.22267576120188,52.06099194836679,0
77.19303492601364,70.45820000180959,1
97.77159928000232,86.7278223300282,1
62.07306379667647,96.76882412413983,1
91.56497449807442,88.69629254546599,1
79.94481794066932,74.16311935043758,1
99.2725269292572,60.99903099844988,1
90.54671411399852,43.39060180650027,1
34.52451385320009,60.39634245837173,0
50.2864961189907,49.80453881323059,0
49.58667721632031,59.80895099453265,0
97.64563396007767,68.86157272420604,1
32.57720016809309,95.59854761387875,0
74.24869136721598,69.82457122657193,1
71.79646205863379,78.45356224515052,1
75.3956114656803,85.75993667331619,1
35.28611281526193,47.02051394723416,0
56.25381749711624,39.26147251058019,0
30.05882244669796,49.59297386723685,0
44.66826172480893,66.45008614558913,0
66.56089447242954,41.09209807936973,0
40.45755098375164,97.53518548909936,1
49.07256321908844,51.88321182073966,0
80.27957401466998,92.11606081344084,1
66.74671856944039,60.99139402740988,1
32.72283304060323,43.30717306430063,0
64.0393204150601,78.03168802018232,1
72.34649422579923,96.22759296761404,1
60.45788573918959,73.09499809758037,1
58.84095621726802,75.85844831279042,1
99.82785779692128,72.36925193383885,1
47.26426910848174,88.47586499559782,1
50.45815980285988,75.80985952982456,1
60.45555629271532,42.50840943572217,0
82.22666157785568,42.71987853716458,0
88.9138964166533,69.80378889835472,1
94.83450672430196,45.69430680250754,1
67.31925746917527,66.58935317747915,1
57.23870631569862,59.51428198012956,1
80.36675600171273,90.96014789746954,1
68.46852178591112,85.59430710452014,1
42.0754545384731,78.84478600148043,0
75.47770200533905,90.42453899753964,1
78.63542434898018,96.64742716885644,1
52.34800398794107,60.76950525602592,0
94.09433112516793,77.15910509073893,1
90.44855097096364,87.50879176484702,1
55.48216114069585,35.57070347228866,0
74.49269241843041,84.84513684930135,1
89.84580670720979,45.35828361091658,1
83.48916274498238,48.38028579728175,1
42.2617008099817,87.10385094025457,1
99.31500880510394,68.77540947206617,1
55.34001756003703,64.9319380069486,1
74.77589300092767,89.52981289513276,1

View File

@@ -0,0 +1,118 @@
0.051267,0.69956,1
-0.092742,0.68494,1
-0.21371,0.69225,1
-0.375,0.50219,1
-0.51325,0.46564,1
-0.52477,0.2098,1
-0.39804,0.034357,1
-0.30588,-0.19225,1
0.016705,-0.40424,1
0.13191,-0.51389,1
0.38537,-0.56506,1
0.52938,-0.5212,1
0.63882,-0.24342,1
0.73675,-0.18494,1
0.54666,0.48757,1
0.322,0.5826,1
0.16647,0.53874,1
-0.046659,0.81652,1
-0.17339,0.69956,1
-0.47869,0.63377,1
-0.60541,0.59722,1
-0.62846,0.33406,1
-0.59389,0.005117,1
-0.42108,-0.27266,1
-0.11578,-0.39693,1
0.20104,-0.60161,1
0.46601,-0.53582,1
0.67339,-0.53582,1
-0.13882,0.54605,1
-0.29435,0.77997,1
-0.26555,0.96272,1
-0.16187,0.8019,1
-0.17339,0.64839,1
-0.28283,0.47295,1
-0.36348,0.31213,1
-0.30012,0.027047,1
-0.23675,-0.21418,1
-0.06394,-0.18494,1
0.062788,-0.16301,1
0.22984,-0.41155,1
0.2932,-0.2288,1
0.48329,-0.18494,1
0.64459,-0.14108,1
0.46025,0.012427,1
0.6273,0.15863,1
0.57546,0.26827,1
0.72523,0.44371,1
0.22408,0.52412,1
0.44297,0.67032,1
0.322,0.69225,1
0.13767,0.57529,1
-0.0063364,0.39985,1
-0.092742,0.55336,1
-0.20795,0.35599,1
-0.20795,0.17325,1
-0.43836,0.21711,1
-0.21947,-0.016813,1
-0.13882,-0.27266,1
0.18376,0.93348,0
0.22408,0.77997,0
0.29896,0.61915,0
0.50634,0.75804,0
0.61578,0.7288,0
0.60426,0.59722,0
0.76555,0.50219,0
0.92684,0.3633,0
0.82316,0.27558,0
0.96141,0.085526,0
0.93836,0.012427,0
0.86348,-0.082602,0
0.89804,-0.20687,0
0.85196,-0.36769,0
0.82892,-0.5212,0
0.79435,-0.55775,0
0.59274,-0.7405,0
0.51786,-0.5943,0
0.46601,-0.41886,0
0.35081,-0.57968,0
0.28744,-0.76974,0
0.085829,-0.75512,0
0.14919,-0.57968,0
-0.13306,-0.4481,0
-0.40956,-0.41155,0
-0.39228,-0.25804,0
-0.74366,-0.25804,0
-0.69758,0.041667,0
-0.75518,0.2902,0
-0.69758,0.68494,0
-0.4038,0.70687,0
-0.38076,0.91886,0
-0.50749,0.90424,0
-0.54781,0.70687,0
0.10311,0.77997,0
0.057028,0.91886,0
-0.10426,0.99196,0
-0.081221,1.1089,0
0.28744,1.087,0
0.39689,0.82383,0
0.63882,0.88962,0
0.82316,0.66301,0
0.67339,0.64108,0
1.0709,0.10015,0
-0.046659,-0.57968,0
-0.23675,-0.63816,0
-0.15035,-0.36769,0
-0.49021,-0.3019,0
-0.46717,-0.13377,0
-0.28859,-0.060673,0
-0.61118,-0.067982,0
-0.66302,-0.21418,0
-0.59965,-0.41886,0
-0.72638,-0.082602,0
-0.83007,0.31213,0
-0.72062,0.53874,0
-0.59389,0.49488,0
-0.48445,0.99927,0
-0.0063364,0.99927,0
0.63265,-0.030612,0

View File

@@ -0,0 +1,28 @@
function [theta,hist] = findmin(CF, X, y, theta, alpha, num_iters)
%GRADIENTDESCENTMULTI Performs gradient descent to learn theta
% theta = GRADIENTDESCENTMULTI(x, y, theta, alpha, num_iters) updates theta by
% taking num_iters gradient steps with learning rate alpha
hist = zeros(num_iters+1, length(theta));
hist(1,:) = theta';
for iter = 1:num_iters
% ====================== YOUR CODE HERE ======================
% Instructions: Perform a single gradient step on the parameter vector
% theta.
%
% Hint: While debugging, it can be useful to print out the values
% of the cost function (computeCostMulti) and gradient here.
%
[J,g] = CF( theta, X, y );
theta = theta - alpha * g;
hist(iter+1,:) = theta';
end
end

View File

@@ -0,0 +1,21 @@
function out = mapFeature(X1, X2)
% MAPFEATURE Feature mapping function to polynomial features
%
% MAPFEATURE(X1, X2) maps the two input features
% to quadratic features used in the regularization exercise.
%
% Returns a new feature array with more features, comprising of
% X1, X2, X1.^2, X2.^2, X1*X2, X1*X2.^2, etc..
%
% Inputs X1, X2 must be the same size
%
degree = 6;
out = ones(size(X1(:,1)));
for i = 1:degree
for j = 0:i
out(:, end+1) = (X1.^(i-j)).*(X2.^j);
end
end
end

View File

@@ -0,0 +1,29 @@
function plotData(X, y)
%PLOTDATA Plots the data points X and y into a new figure
% PLOTDATA(x,y) plots the data points with + for the positive examples
% and o for the negative examples. X is assumed to be a Mx2 matrix.
% Create New Figure
figure; hold on;
% ====================== YOUR CODE HERE ======================
% Instructions: Plot the positive and negative examples on a
% 2D plot, using the option 'k+' for the positive
% examples and 'ko' for the negative examples.
%
% =========================================================================
hold off;
end

View File

@@ -0,0 +1,48 @@
function plotDecisionBoundary(theta, X, y)
%PLOTDECISIONBOUNDARY Plots the data points X and y into a new figure with
%the decision boundary defined by theta
% PLOTDECISIONBOUNDARY(theta, X,y) plots the data points with + for the
% positive examples and o for the negative examples. X is assumed to be
% a either
% 1) Mx3 matrix, where the first column is an all-ones column for the
% intercept.
% 2) MxN, N>3 matrix, where the first column is all-ones
% Plot Data
plotData(X(:,2:3), y);
hold on
if size(X, 2) <= 3
% Only need 2 points to define a line, so choose two endpoints
plot_x = [min(X(:,2))-2, max(X(:,2))+2];
% Calculate the decision boundary line
plot_y = (-1./theta(3)).*(theta(2).*plot_x + theta(1));
% Plot, and adjust axes for better viewing
plot(plot_x, plot_y)
% Legend, specific for the exercise
legend('Admitted', 'Not admitted', 'Decision Boundary')
axis([30, 100, 30, 100])
else
% Here is the grid range
u = linspace(-1, 1.5, 50);
v = linspace(-1, 1.5, 50);
z = zeros(length(u), length(v));
% Evaluate z = theta*x over the grid
for i = 1:length(u)
for j = 1:length(v)
z(i,j) = mapFeature(u(i), v(j))*theta;
end
end
z = z'; % important to transpose z before calling contour
% Plot z = 0
% Notice you need to specify the range [0, 0]
contour(u, v, z, [0, 0], 'LineWidth', 2)
end
hold off
end

View File

@@ -0,0 +1,27 @@
function p = predict(theta, X)
%PREDICT Predict whether the label is 0 or 1 using learned logistic
%regression parameters theta
% p = PREDICT(theta, X) computes the predictions for X using a
% threshold at 0.5 (i.e., if sigmoid(theta'*x) >= 0.5, predict 1)
m = size(X, 1); % Number of training examples
% You need to return the following variables correctly
p = zeros(m, 1);
% ====================== YOUR CODE HERE ======================
% Instructions: Complete the following code to make predictions using
% your learned logistic regression parameters.
% You should set p to a vector of 0's and 1's
%
h = sigmoid( X*theta );
p = round(h);
% =========================================================================
end

View File

@@ -0,0 +1,19 @@
function g = sigmoid(z)
%SIGMOID Compute sigmoid functoon
% J = SIGMOID(z) computes the sigmoid of z.
% You need to return the following variables correctly
g = zeros(size(z));
% ====================== YOUR CODE HERE ======================
% Instructions: Compute the sigmoid of each value of z (z can be a matrix,
% vector or scalar).
g = ones(size(z)) ./ (ones(size(z)) + exp(-1*z));
% =============================================================
end

View File

@@ -0,0 +1,574 @@
function submit(partId, webSubmit)
%SUBMIT Submit your code and output to the ml-class servers
% SUBMIT() will connect to the ml-class server and submit your solution
fprintf('==\n== [ml-class] Submitting Solutions | Programming Exercise %s\n==\n', ...
homework_id());
if ~exist('partId', 'var') || isempty(partId)
partId = promptPart();
end
if ~exist('webSubmit', 'var') || isempty(webSubmit)
webSubmit = 0; % submit directly by default
end
% Check valid partId
partNames = validParts();
if ~isValidPartId(partId)
fprintf('!! Invalid homework part selected.\n');
fprintf('!! Expected an integer from 1 to %d.\n', numel(partNames) + 1);
fprintf('!! Submission Cancelled\n');
return
end
if ~exist('ml_login_data.mat','file')
[login password] = loginPrompt();
save('ml_login_data.mat','login','password');
else
load('ml_login_data.mat');
[login password] = quickLogin(login, password);
save('ml_login_data.mat','login','password');
end
if isempty(login)
fprintf('!! Submission Cancelled\n');
return
end
fprintf('\n== Connecting to ml-class ... ');
if exist('OCTAVE_VERSION')
fflush(stdout);
end
% Setup submit list
if partId == numel(partNames) + 1
submitParts = 1:numel(partNames);
else
submitParts = [partId];
end
for s = 1:numel(submitParts)
thisPartId = submitParts(s);
if (~webSubmit) % submit directly to server
[login, ch, signature, auxstring] = getChallenge(login, thisPartId);
if isempty(login) || isempty(ch) || isempty(signature)
% Some error occured, error string in first return element.
fprintf('\n!! Error: %s\n\n', login);
return
end
% Attempt Submission with Challenge
ch_resp = challengeResponse(login, password, ch);
[result, str] = submitSolution(login, ch_resp, thisPartId, ...
output(thisPartId, auxstring), source(thisPartId), signature);
partName = partNames{thisPartId};
fprintf('\n== [ml-class] Submitted Assignment %s - Part %d - %s\n', ...
homework_id(), thisPartId, partName);
fprintf('== %s\n', strtrim(str));
if exist('OCTAVE_VERSION')
fflush(stdout);
end
else
[result] = submitSolutionWeb(login, thisPartId, output(thisPartId), ...
source(thisPartId));
result = base64encode(result);
fprintf('\nSave as submission file [submit_ex%s_part%d.txt (enter to accept default)]:', ...
homework_id(), thisPartId);
saveAsFile = input('', 's');
if (isempty(saveAsFile))
saveAsFile = sprintf('submit_ex%s_part%d.txt', homework_id(), thisPartId);
end
fid = fopen(saveAsFile, 'w');
if (fid)
fwrite(fid, result);
fclose(fid);
fprintf('\nSaved your solutions to %s.\n\n', saveAsFile);
fprintf(['You can now submit your solutions through the web \n' ...
'form in the programming exercises. Select the corresponding \n' ...
'programming exercise to access the form.\n']);
else
fprintf('Unable to save to %s\n\n', saveAsFile);
fprintf(['You can create a submission file by saving the \n' ...
'following text in a file: (press enter to continue)\n\n']);
pause;
fprintf(result);
end
end
end
end
% ================== CONFIGURABLES FOR EACH HOMEWORK ==================
function id = homework_id()
id = '2';
end
function [partNames] = validParts()
partNames = { 'Sigmoid Function ', ...
'Logistic Regression Cost', ...
'Logistic Regression Gradient', ...
'Predict', ...
'Regularized Logistic Regression Cost' ...
'Regularized Logistic Regression Gradient' ...
};
end
function srcs = sources()
% Separated by part
srcs = { { 'sigmoid.m' }, ...
{ 'costFunction.m' }, ...
{ 'costFunction.m' }, ...
{ 'predict.m' }, ...
{ 'costFunctionReg.m' }, ...
{ 'costFunctionReg.m' } };
end
function out = output(partId, auxstring)
% Random Test Cases
X = [ones(20,1) (exp(1) * sin(1:1:20))' (exp(0.5) * cos(1:1:20))'];
y = sin(X(:,1) + X(:,2)) > 0;
if partId == 1
out = sprintf('%0.5f ', sigmoid(X));
elseif partId == 2
out = sprintf('%0.5f ', costFunction([0.25 0.5 -0.5]', X, y));
elseif partId == 3
[cost, grad] = costFunction([0.25 0.5 -0.5]', X, y);
out = sprintf('%0.5f ', grad);
elseif partId == 4
out = sprintf('%0.5f ', predict([0.25 0.5 -0.5]', X));
elseif partId == 5
out = sprintf('%0.5f ', costFunctionReg([0.25 0.5 -0.5]', X, y, 0.1));
elseif partId == 6
[cost, grad] = costFunctionReg([0.25 0.5 -0.5]', X, y, 0.1);
out = sprintf('%0.5f ', grad);
end
end
% ====================== SERVER CONFIGURATION ===========================
% ***************** REMOVE -staging WHEN YOU DEPLOY *********************
function url = site_url()
url = 'http://class.coursera.org/ml-008';
end
function url = challenge_url()
url = [site_url() '/assignment/challenge'];
end
function url = submit_url()
url = [site_url() '/assignment/submit'];
end
% ========================= CHALLENGE HELPERS =========================
function src = source(partId)
src = '';
src_files = sources();
if partId <= numel(src_files)
flist = src_files{partId};
for i = 1:numel(flist)
fid = fopen(flist{i});
if (fid == -1)
error('Error opening %s (is it missing?)', flist{i});
end
line = fgets(fid);
while ischar(line)
src = [src line];
line = fgets(fid);
end
fclose(fid);
src = [src '||||||||'];
end
end
end
function ret = isValidPartId(partId)
partNames = validParts();
ret = (~isempty(partId)) && (partId >= 1) && (partId <= numel(partNames) + 1);
end
function partId = promptPart()
fprintf('== Select which part(s) to submit:\n');
partNames = validParts();
srcFiles = sources();
for i = 1:numel(partNames)
fprintf('== %d) %s [', i, partNames{i});
fprintf(' %s ', srcFiles{i}{:});
fprintf(']\n');
end
fprintf('== %d) All of the above \n==\nEnter your choice [1-%d]: ', ...
numel(partNames) + 1, numel(partNames) + 1);
selPart = input('', 's');
partId = str2num(selPart);
if ~isValidPartId(partId)
partId = -1;
end
end
function [email,ch,signature,auxstring] = getChallenge(email, part)
str = urlread(challenge_url(), 'post', {'email_address', email, 'assignment_part_sid', [homework_id() '-' num2str(part)], 'response_encoding', 'delim'});
str = strtrim(str);
r = struct;
while(numel(str) > 0)
[f, str] = strtok (str, '|');
[v, str] = strtok (str, '|');
r = setfield(r, f, v);
end
email = getfield(r, 'email_address');
ch = getfield(r, 'challenge_key');
signature = getfield(r, 'state');
auxstring = getfield(r, 'challenge_aux_data');
end
function [result, str] = submitSolutionWeb(email, part, output, source)
result = ['{"assignment_part_sid":"' base64encode([homework_id() '-' num2str(part)], '') '",' ...
'"email_address":"' base64encode(email, '') '",' ...
'"submission":"' base64encode(output, '') '",' ...
'"submission_aux":"' base64encode(source, '') '"' ...
'}'];
str = 'Web-submission';
end
function [result, str] = submitSolution(email, ch_resp, part, output, ...
source, signature)
params = {'assignment_part_sid', [homework_id() '-' num2str(part)], ...
'email_address', email, ...
'submission', base64encode(output, ''), ...
'submission_aux', base64encode(source, ''), ...
'challenge_response', ch_resp, ...
'state', signature};
str = urlread(submit_url(), 'post', params);
% Parse str to read for success / failure
result = 0;
end
% =========================== LOGIN HELPERS ===========================
function [login password] = loginPrompt()
% Prompt for password
[login password] = basicPrompt();
if isempty(login) || isempty(password)
login = []; password = [];
end
end
function [login password] = basicPrompt()
login = input('Login (Email address): ', 's');
password = input('Password: ', 's');
end
function [login password] = quickLogin(login,password)
disp(['You are currently logged in as ' login '.']);
cont_token = input('Is this you? (y/n - type n to reenter password)','s');
if(isempty(cont_token) || cont_token(1)=='Y'||cont_token(1)=='y')
return;
else
[login password] = loginPrompt();
end
end
function [str] = challengeResponse(email, passwd, challenge)
str = sha1([challenge passwd]);
end
% =============================== SHA-1 ================================
function hash = sha1(str)
% Initialize variables
h0 = uint32(1732584193);
h1 = uint32(4023233417);
h2 = uint32(2562383102);
h3 = uint32(271733878);
h4 = uint32(3285377520);
% Convert to word array
strlen = numel(str);
% Break string into chars and append the bit 1 to the message
mC = [double(str) 128];
mC = [mC zeros(1, 4-mod(numel(mC), 4), 'uint8')];
numB = strlen * 8;
if exist('idivide')
numC = idivide(uint32(numB + 65), 512, 'ceil');
else
numC = ceil(double(numB + 65)/512);
end
numW = numC * 16;
mW = zeros(numW, 1, 'uint32');
idx = 1;
for i = 1:4:strlen + 1
mW(idx) = bitor(bitor(bitor( ...
bitshift(uint32(mC(i)), 24), ...
bitshift(uint32(mC(i+1)), 16)), ...
bitshift(uint32(mC(i+2)), 8)), ...
uint32(mC(i+3)));
idx = idx + 1;
end
% Append length of message
mW(numW - 1) = uint32(bitshift(uint64(numB), -32));
mW(numW) = uint32(bitshift(bitshift(uint64(numB), 32), -32));
% Process the message in successive 512-bit chs
for cId = 1 : double(numC)
cSt = (cId - 1) * 16 + 1;
cEnd = cId * 16;
ch = mW(cSt : cEnd);
% Extend the sixteen 32-bit words into eighty 32-bit words
for j = 17 : 80
ch(j) = ch(j - 3);
ch(j) = bitxor(ch(j), ch(j - 8));
ch(j) = bitxor(ch(j), ch(j - 14));
ch(j) = bitxor(ch(j), ch(j - 16));
ch(j) = bitrotate(ch(j), 1);
end
% Initialize hash value for this ch
a = h0;
b = h1;
c = h2;
d = h3;
e = h4;
% Main loop
for i = 1 : 80
if(i >= 1 && i <= 20)
f = bitor(bitand(b, c), bitand(bitcmp(b), d));
k = uint32(1518500249);
elseif(i >= 21 && i <= 40)
f = bitxor(bitxor(b, c), d);
k = uint32(1859775393);
elseif(i >= 41 && i <= 60)
f = bitor(bitor(bitand(b, c), bitand(b, d)), bitand(c, d));
k = uint32(2400959708);
elseif(i >= 61 && i <= 80)
f = bitxor(bitxor(b, c), d);
k = uint32(3395469782);
end
t = bitrotate(a, 5);
t = bitadd(t, f);
t = bitadd(t, e);
t = bitadd(t, k);
t = bitadd(t, ch(i));
e = d;
d = c;
c = bitrotate(b, 30);
b = a;
a = t;
end
h0 = bitadd(h0, a);
h1 = bitadd(h1, b);
h2 = bitadd(h2, c);
h3 = bitadd(h3, d);
h4 = bitadd(h4, e);
end
hash = reshape(dec2hex(double([h0 h1 h2 h3 h4]), 8)', [1 40]);
hash = lower(hash);
end
function ret = bitadd(iA, iB)
ret = double(iA) + double(iB);
ret = bitset(ret, 33, 0);
ret = uint32(ret);
end
function ret = bitrotate(iA, places)
t = bitshift(iA, places - 32);
ret = bitshift(iA, places);
ret = bitor(ret, t);
end
% =========================== Base64 Encoder ============================
% Thanks to Peter John Acklam
%
function y = base64encode(x, eol)
%BASE64ENCODE Perform base64 encoding on a string.
%
% BASE64ENCODE(STR, EOL) encode the given string STR. EOL is the line ending
% sequence to use; it is optional and defaults to '\n' (ASCII decimal 10).
% The returned encoded string is broken into lines of no more than 76
% characters each, and each line will end with EOL unless it is empty. Let
% EOL be empty if you do not want the encoded string broken into lines.
%
% STR and EOL don't have to be strings (i.e., char arrays). The only
% requirement is that they are vectors containing values in the range 0-255.
%
% This function may be used to encode strings into the Base64 encoding
% specified in RFC 2045 - MIME (Multipurpose Internet Mail Extensions). The
% Base64 encoding is designed to represent arbitrary sequences of octets in a
% form that need not be humanly readable. A 65-character subset
% ([A-Za-z0-9+/=]) of US-ASCII is used, enabling 6 bits to be represented per
% printable character.
%
% Examples
% --------
%
% If you want to encode a large file, you should encode it in chunks that are
% a multiple of 57 bytes. This ensures that the base64 lines line up and
% that you do not end up with padding in the middle. 57 bytes of data fills
% one complete base64 line (76 == 57*4/3):
%
% If ifid and ofid are two file identifiers opened for reading and writing,
% respectively, then you can base64 encode the data with
%
% while ~feof(ifid)
% fwrite(ofid, base64encode(fread(ifid, 60*57)));
% end
%
% or, if you have enough memory,
%
% fwrite(ofid, base64encode(fread(ifid)));
%
% See also BASE64DECODE.
% Author: Peter John Acklam
% Time-stamp: 2004-02-03 21:36:56 +0100
% E-mail: pjacklam@online.no
% URL: http://home.online.no/~pjacklam
if isnumeric(x)
x = num2str(x);
end
% make sure we have the EOL value
if nargin < 2
eol = sprintf('\n');
else
if sum(size(eol) > 1) > 1
error('EOL must be a vector.');
end
if any(eol(:) > 255)
error('EOL can not contain values larger than 255.');
end
end
if sum(size(x) > 1) > 1
error('STR must be a vector.');
end
x = uint8(x);
eol = uint8(eol);
ndbytes = length(x); % number of decoded bytes
nchunks = ceil(ndbytes / 3); % number of chunks/groups
nebytes = 4 * nchunks; % number of encoded bytes
% add padding if necessary, to make the length of x a multiple of 3
if rem(ndbytes, 3)
x(end+1 : 3*nchunks) = 0;
end
x = reshape(x, [3, nchunks]); % reshape the data
y = repmat(uint8(0), 4, nchunks); % for the encoded data
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Split up every 3 bytes into 4 pieces
%
% aaaaaabb bbbbcccc ccdddddd
%
% to form
%
% 00aaaaaa 00bbbbbb 00cccccc 00dddddd
%
y(1,:) = bitshift(x(1,:), -2); % 6 highest bits of x(1,:)
y(2,:) = bitshift(bitand(x(1,:), 3), 4); % 2 lowest bits of x(1,:)
y(2,:) = bitor(y(2,:), bitshift(x(2,:), -4)); % 4 highest bits of x(2,:)
y(3,:) = bitshift(bitand(x(2,:), 15), 2); % 4 lowest bits of x(2,:)
y(3,:) = bitor(y(3,:), bitshift(x(3,:), -6)); % 2 highest bits of x(3,:)
y(4,:) = bitand(x(3,:), 63); % 6 lowest bits of x(3,:)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Now perform the following mapping
%
% 0 - 25 -> A-Z
% 26 - 51 -> a-z
% 52 - 61 -> 0-9
% 62 -> +
% 63 -> /
%
% We could use a mapping vector like
%
% ['A':'Z', 'a':'z', '0':'9', '+/']
%
% but that would require an index vector of class double.
%
z = repmat(uint8(0), size(y));
i = y <= 25; z(i) = 'A' + double(y(i));
i = 26 <= y & y <= 51; z(i) = 'a' - 26 + double(y(i));
i = 52 <= y & y <= 61; z(i) = '0' - 52 + double(y(i));
i = y == 62; z(i) = '+';
i = y == 63; z(i) = '/';
y = z;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Add padding if necessary.
%
npbytes = 3 * nchunks - ndbytes; % number of padding bytes
if npbytes
y(end-npbytes+1 : end) = '='; % '=' is used for padding
end
if isempty(eol)
% reshape to a row vector
y = reshape(y, [1, nebytes]);
else
nlines = ceil(nebytes / 76); % number of lines
neolbytes = length(eol); % number of bytes in eol string
% pad data so it becomes a multiple of 76 elements
y = [y(:) ; zeros(76 * nlines - numel(y), 1)];
y(nebytes + 1 : 76 * nlines) = 0;
y = reshape(y, 76, nlines);
% insert eol strings
eol = eol(:);
y(end + 1 : end + neolbytes, :) = eol(:, ones(1, nlines));
% remove padding, but keep the last eol string
m = nebytes + neolbytes * (nlines - 1);
n = (76+neolbytes)*nlines - neolbytes;
y(m+1 : n) = '';
% extract and reshape to row vector
y = reshape(y, 1, m+neolbytes);
end
% output is a character array
y = char(y);
end

View File

@@ -0,0 +1,20 @@
% submitWeb Creates files from your code and output for web submission.
%
% If the submit function does not work for you, use the web-submission mechanism.
% Call this function to produce a file for the part you wish to submit. Then,
% submit the file to the class servers using the "Web Submission" button on the
% Programming Exercises page on the course website.
%
% You should call this function without arguments (submitWeb), to receive
% an interactive prompt for submission; optionally you can call it with the partID
% if you so wish. Make sure your working directory is set to the directory
% containing the submitWeb.m file and your assignment files.
function submitWeb(partId)
if ~exist('partId', 'var') || isempty(partId)
partId = [];
end
submit(partId, 1);
end

Binary file not shown.

View File

@@ -0,0 +1,59 @@
function [h, display_array] = displayData(X, example_width)
%DISPLAYDATA Display 2D data in a nice grid
% [h, display_array] = DISPLAYDATA(X, example_width) displays 2D data
% stored in X in a nice grid. It returns the figure handle h and the
% displayed array if requested.
% Set example_width automatically if not passed in
if ~exist('example_width', 'var') || isempty(example_width)
example_width = round(sqrt(size(X, 2)));
end
% Gray Image
colormap(gray);
% Compute rows, cols
[m n] = size(X);
example_height = (n / example_width);
% Compute number of items to display
display_rows = floor(sqrt(m));
display_cols = ceil(m / display_rows);
% Between images padding
pad = 1;
% Setup blank display
display_array = - ones(pad + display_rows * (example_height + pad), ...
pad + display_cols * (example_width + pad));
% Copy each example into a patch on the display array
curr_ex = 1;
for j = 1:display_rows
for i = 1:display_cols
if curr_ex > m,
break;
end
% Copy the patch
% Get the max value of the patch
max_val = max(abs(X(curr_ex, :)));
display_array(pad + (j - 1) * (example_height + pad) + (1:example_height), ...
pad + (i - 1) * (example_width + pad) + (1:example_width)) = ...
reshape(X(curr_ex, :), example_height, example_width) / max_val;
curr_ex = curr_ex + 1;
end
if curr_ex > m,
break;
end
end
% Display Image
h = imagesc(display_array, [-1 1]);
% Do not show axis
axis image off
drawnow;
end

View File

@@ -0,0 +1,69 @@
%% Machine Learning Online Class - Exercise 3 | Part 1: One-vs-all
% Instructions
% ------------
%
% This file contains code that helps you get started on the
% linear exercise. You will need to complete the following functions
% in this exericse:
%
% lrCostFunction.m (logistic regression cost function)
% oneVsAll.m
% predictOneVsAll.m
% predict.m
%
% For this exercise, you will not need to change any code in this file,
% or any other files other than those mentioned above.
%
%% Initialization
clear ; close all; clc
%% Setup the parameters you will use for this part of the exercise
input_layer_size = 400; % 20x20 Input Images of Digits
num_labels = 10; % 10 labels, from 1 to 10
% (note that we have mapped "0" to label 10)
%% =========== Part 1: Loading and Visualizing Data =============
% We start the exercise by first loading and visualizing the dataset.
% You will be working with a dataset that contains handwritten digits.
%
% Load Training Data
fprintf('Loading and Visualizing Data ...\n')
load('ex3data1.mat'); % training data stored in arrays X, y
m = size(X, 1);
% Randomly select 100 data points to display
rand_indices = randperm(m);
sel = X(rand_indices(1:100), :);
%displayData(sel);
fprintf('Program paused. Press enter to continue.\n');
pause;
%% ============ Part 2: Vectorize Logistic Regression ============
% In this part of the exercise, you will reuse your logistic regression
% code from the last exercise. You task here is to make sure that your
% regularized logistic regression implementation is vectorized. After
% that, you will implement one-vs-all classification for the handwritten
% digit dataset.
%
fprintf('\nTraining One-vs-All Logistic Regression...\n')
lambda = 0.1;
[all_theta] = oneVsAll(X, y, num_labels, lambda);
fprintf('Program paused. Press enter to continue.\n');
pause;
%% ================ Part 3: Predict for One-Vs-All ================
% After ...
pred = predictOneVsAll(all_theta, X);
fprintf('\nTraining Set Accuracy: %f\n', mean(double(pred == y)) * 100);

View File

@@ -0,0 +1,88 @@
%% Machine Learning Online Class - Exercise 3 | Part 2: Neural Networks
% Instructions
% ------------
%
% This file contains code that helps you get started on the
% linear exercise. You will need to complete the following functions
% in this exericse:
%
% lrCostFunction.m (logistic regression cost function)
% oneVsAll.m
% predictOneVsAll.m
% predict.m
%
% For this exercise, you will not need to change any code in this file,
% or any other files other than those mentioned above.
%
%% Initialization
clear ; close all; clc
%% Setup the parameters you will use for this exercise
input_layer_size = 400; % 20x20 Input Images of Digits
hidden_layer_size = 25; % 25 hidden units
num_labels = 10; % 10 labels, from 1 to 10
% (note that we have mapped "0" to label 10)
%% =========== Part 1: Loading and Visualizing Data =============
% We start the exercise by first loading and visualizing the dataset.
% You will be working with a dataset that contains handwritten digits.
%
% Load Training Data
fprintf('Loading and Visualizing Data ...\n')
load('ex3data1.mat');
m = size(X, 1);
% Randomly select 100 data points to display
sel = randperm(size(X, 1));
sel = sel(1:100);
displayData(X(sel, :));
fprintf('Program paused. Press enter to continue.\n');
pause;
%% ================ Part 2: Loading Pameters ================
% In this part of the exercise, we load some pre-initialized
% neural network parameters.
fprintf('\nLoading Saved Neural Network Parameters ...\n')
% Load the weights into variables Theta1 and Theta2
load('ex3weights.mat');
%% ================= Part 3: Implement Predict =================
% After training the neural network, we would like to use it to predict
% the labels. You will now implement the "predict" function to use the
% neural network to predict the labels of the training set. This lets
% you compute the training set accuracy.
pred = predict(Theta1, Theta2, X);
fprintf('\nTraining Set Accuracy: %f\n', mean(double(pred == y)) * 100);
fprintf('Program paused. Press enter to continue.\n');
pause;
% To give you an idea of the network's output, you can also run
% through the examples one at the a time to see what it is predicting.
% Randomly permute examples
rp = randperm(m);
for i = 1:m
% Display
fprintf('\nDisplaying Example Image\n');
displayData(X(rp(i), :));
pred = predict(Theta1, Theta2, X(rp(i),:));
fprintf('\nNeural Network Prediction: %d (digit %d)\n', pred, mod(pred, 10));
% Pause
fprintf('Program paused. Press enter to continue.\n');
pause;
end

View File

@@ -0,0 +1,175 @@
function [X, fX, i] = fmincg(f, X, options, P1, P2, P3, P4, P5)
% Minimize a continuous differentialble multivariate function. Starting point
% is given by "X" (D by 1), and the function named in the string "f", must
% return a function value and a vector of partial derivatives. The Polack-
% Ribiere flavour of conjugate gradients is used to compute search directions,
% and a line search using quadratic and cubic polynomial approximations and the
% Wolfe-Powell stopping criteria is used together with the slope ratio method
% for guessing initial step sizes. Additionally a bunch of checks are made to
% make sure that exploration is taking place and that extrapolation will not
% be unboundedly large. The "length" gives the length of the run: if it is
% positive, it gives the maximum number of line searches, if negative its
% absolute gives the maximum allowed number of function evaluations. You can
% (optionally) give "length" a second component, which will indicate the
% reduction in function value to be expected in the first line-search (defaults
% to 1.0). The function returns when either its length is up, or if no further
% progress can be made (ie, we are at a minimum, or so close that due to
% numerical problems, we cannot get any closer). If the function terminates
% within a few iterations, it could be an indication that the function value
% and derivatives are not consistent (ie, there may be a bug in the
% implementation of your "f" function). The function returns the found
% solution "X", a vector of function values "fX" indicating the progress made
% and "i" the number of iterations (line searches or function evaluations,
% depending on the sign of "length") used.
%
% Usage: [X, fX, i] = fmincg(f, X, options, P1, P2, P3, P4, P5)
%
% See also: checkgrad
%
% Copyright (C) 2001 and 2002 by Carl Edward Rasmussen. Date 2002-02-13
%
%
% (C) Copyright 1999, 2000 & 2001, Carl Edward Rasmussen
%
% Permission is granted for anyone to copy, use, or modify these
% programs and accompanying documents for purposes of research or
% education, provided this copyright notice is retained, and note is
% made of any changes that have been made.
%
% These programs and documents are distributed without any warranty,
% express or implied. As the programs were written for research
% purposes only, they have not been tested to the degree that would be
% advisable in any important application. All use of these programs is
% entirely at the user's own risk.
%
% [ml-class] Changes Made:
% 1) Function name and argument specifications
% 2) Output display
%
% Read options
if exist('options', 'var') && ~isempty(options) && isfield(options, 'MaxIter')
length = options.MaxIter;
else
length = 100;
end
RHO = 0.01; % a bunch of constants for line searches
SIG = 0.5; % RHO and SIG are the constants in the Wolfe-Powell conditions
INT = 0.1; % don't reevaluate within 0.1 of the limit of the current bracket
EXT = 3.0; % extrapolate maximum 3 times the current bracket
MAX = 20; % max 20 function evaluations per line search
RATIO = 100; % maximum allowed slope ratio
argstr = ['feval(f, X']; % compose string used to call function
for i = 1:(nargin - 3)
argstr = [argstr, ',P', int2str(i)];
end
argstr = [argstr, ')'];
if max(size(length)) == 2, red=length(2); length=length(1); else red=1; end
S=['Iteration '];
i = 0; % zero the run length counter
ls_failed = 0; % no previous line search has failed
fX = [];
[f1 df1] = eval(argstr); % get function value and gradient
i = i + (length<0); % count epochs?!
s = -df1; % search direction is steepest
d1 = -s'*s; % this is the slope
z1 = red/(1-d1); % initial step is red/(|s|+1)
while i < abs(length) % while not finished
i = i + (length>0); % count iterations?!
X0 = X; f0 = f1; df0 = df1; % make a copy of current values
X = X + z1*s; % begin line search
[f2 df2] = eval(argstr);
i = i + (length<0); % count epochs?!
d2 = df2'*s;
f3 = f1; d3 = d1; z3 = -z1; % initialize point 3 equal to point 1
if length>0, M = MAX; else M = min(MAX, -length-i); end
success = 0; limit = -1; % initialize quanteties
while 1
while ((f2 > f1+z1*RHO*d1) | (d2 > -SIG*d1)) & (M > 0)
limit = z1; % tighten the bracket
if f2 > f1
z2 = z3 - (0.5*d3*z3*z3)/(d3*z3+f2-f3); % quadratic fit
else
A = 6*(f2-f3)/z3+3*(d2+d3); % cubic fit
B = 3*(f3-f2)-z3*(d3+2*d2);
z2 = (sqrt(B*B-A*d2*z3*z3)-B)/A; % numerical error possible - ok!
end
if isnan(z2) | isinf(z2)
z2 = z3/2; % if we had a numerical problem then bisect
end
z2 = max(min(z2, INT*z3),(1-INT)*z3); % don't accept too close to limits
z1 = z1 + z2; % update the step
X = X + z2*s;
[f2 df2] = eval(argstr);
M = M - 1; i = i + (length<0); % count epochs?!
d2 = df2'*s;
z3 = z3-z2; % z3 is now relative to the location of z2
end
if f2 > f1+z1*RHO*d1 | d2 > -SIG*d1
break; % this is a failure
elseif d2 > SIG*d1
success = 1; break; % success
elseif M == 0
break; % failure
end
A = 6*(f2-f3)/z3+3*(d2+d3); % make cubic extrapolation
B = 3*(f3-f2)-z3*(d3+2*d2);
z2 = -d2*z3*z3/(B+sqrt(B*B-A*d2*z3*z3)); % num. error possible - ok!
if ~isreal(z2) | isnan(z2) | isinf(z2) | z2 < 0 % num prob or wrong sign?
if limit < -0.5 % if we have no upper limit
z2 = z1 * (EXT-1); % the extrapolate the maximum amount
else
z2 = (limit-z1)/2; % otherwise bisect
end
elseif (limit > -0.5) & (z2+z1 > limit) % extraplation beyond max?
z2 = (limit-z1)/2; % bisect
elseif (limit < -0.5) & (z2+z1 > z1*EXT) % extrapolation beyond limit
z2 = z1*(EXT-1.0); % set to extrapolation limit
elseif z2 < -z3*INT
z2 = -z3*INT;
elseif (limit > -0.5) & (z2 < (limit-z1)*(1.0-INT)) % too close to limit?
z2 = (limit-z1)*(1.0-INT);
end
f3 = f2; d3 = d2; z3 = -z2; % set point 3 equal to point 2
z1 = z1 + z2; X = X + z2*s; % update current estimates
[f2 df2] = eval(argstr);
M = M - 1; i = i + (length<0); % count epochs?!
d2 = df2'*s;
end % end of line search
if success % if line search succeeded
f1 = f2; fX = [fX' f1]';
fprintf('%s %4i | Cost: %4.6e\r', S, i, f1);
s = (df2'*df2-df1'*df2)/(df1'*df1)*s - df2; % Polack-Ribiere direction
tmp = df1; df1 = df2; df2 = tmp; % swap derivatives
d2 = df1'*s;
if d2 > 0 % new slope must be negative
s = -df1; % otherwise use steepest direction
d2 = -s'*s;
end
z1 = z1 * min(RATIO, d1/(d2-realmin)); % slope ratio but max RATIO
d1 = d2;
ls_failed = 0; % this line search did not fail
else
X = X0; f1 = f0; df1 = df0; % restore point from before failed line search
if ls_failed | i > abs(length) % line search failed twice in a row
break; % or we ran out of time, so we give up
end
tmp = df1; df1 = df2; df2 = tmp; % swap derivatives
s = -df1; % try steepest
d1 = -s'*s;
z1 = 1/(1-d1);
ls_failed = 1; % this line search failed
end
if exist('OCTAVE_VERSION')
fflush(stdout);
end
end
fprintf('\n');

View File

@@ -0,0 +1,58 @@
function [J, grad] = lrCostFunction(theta, X, y, lambda)
%LRCOSTFUNCTION Compute cost and gradient for logistic regression with
%regularization
% J = LRCOSTFUNCTION(theta, X, y, lambda) computes the cost of using
% theta as the parameter for regularized logistic regression and the
% gradient of the cost w.r.t. to the parameters.
% Initialize some useful values
m = length(y); % number of training examples
% You need to return the following variables correctly
J = 0;
grad = zeros(size(theta));
% ====================== YOUR CODE HERE ======================
% Instructions: Compute the cost of a particular choice of theta.
% You should set J to the cost.
% Compute the partial derivatives and set grad to the partial
% derivatives of the cost w.r.t. each parameter in theta
%
% Hint: The computation of the cost function and gradients can be
% efficiently vectorized. For example, consider the computation
%
% sigmoid(X * theta)
%
% Each row of the resulting matrix will contain the value of the
% prediction for that example. You can make use of this to vectorize
% the cost function and gradient computations.
%
% Hint: When computing the gradient of the regularized cost function,
% there're many possible vectorized solutions, but one solution
% looks like:
% grad = (unregularized gradient for logistic regression)
% temp = theta;
% temp(1) = 0; % because we don't add anything for j = 0
% grad = grad + YOUR_CODE_HERE (using the temp variable)
%
h = sigmoid( X*theta );
o = ones(size(y));
reg = theta;
reg(1) = 0;
J = sum( y .* log(h) + (o-y) .* log(o-h) ) / (-m) + (lambda/(2*m))*sum(reg.^2);
grad = (X'*(h - y)) / m + (lambda/m) * reg;
% =============================================================
grad = grad(:);
end

View File

@@ -0,0 +1,70 @@
function [all_theta] = oneVsAll(X, y, num_labels, lambda)
%ONEVSALL trains multiple logistic regression classifiers and returns all
%the classifiers in a matrix all_theta, where the i-th row of all_theta
%corresponds to the classifier for label i
% [all_theta] = ONEVSALL(X, y, num_labels, lambda) trains num_labels
% logisitc regression classifiers and returns each of these classifiers
% in a matrix all_theta, where the i-th row of all_theta corresponds
% to the classifier for label i
% Some useful variables
m = size(X, 1);
n = size(X, 2);
% You need to return the following variables correctly
all_theta = zeros(num_labels, n + 1);
% Add ones to the X data matrix
X = [ones(m, 1) X];
% ====================== YOUR CODE HERE ======================
% Instructions: You should complete the following code to train num_labels
% logistic regression classifiers with regularization
% parameter lambda.
%
% Hint: theta(:) will return a column vector.
%
% Hint: You can use y == c to obtain a vector of 1's and 0's that tell use
% whether the ground truth is true/false for this class.
%
% Note: For this assignment, we recommend using fmincg to optimize the cost
% function. It is okay to use a for-loop (for c = 1:num_labels) to
% loop over the different classes.
%
% fmincg works similarly to fminunc, but is more efficient when we
% are dealing with large number of parameters.
%
% Example Code for fmincg:
%
% % Set Initial theta
% initial_theta = zeros(n + 1, 1);
%
% % Set options for fminunc
% options = optimset('GradObj', 'on', 'MaxIter', 50);
%
% % Run fmincg to obtain the optimal theta
% % This function will return theta and the cost
% [theta] = ...
% fmincg (@(t)(lrCostFunction(t, X, (y == c), lambda)), ...
% initial_theta, options);
%
options = optimset('GradObj', 'on', 'MaxIter', 50);
initial_theta = zeros(n + 1, 1);
for c = 1:num_labels,
theta = fmincg (@(t)(lrCostFunction(t, X, (y == c), lambda)), initial_theta, options);
all_theta(c,:) = theta;
end;
% =========================================================================
end

View File

@@ -0,0 +1,33 @@
function p = predict(Theta1, Theta2, X)
%PREDICT Predict the label of an input given a trained neural network
% p = PREDICT(Theta1, Theta2, X) outputs the predicted label of X given the
% trained weights of a neural network (Theta1, Theta2)
% Useful values
m = size(X, 1);
num_labels = size(Theta2, 1);
% You need to return the following variables correctly
p = zeros(size(X, 1), 1);
% ====================== YOUR CODE HERE ======================
% Instructions: Complete the following code to make predictions using
% your learned neural network. You should set p to a
% vector containing labels between 1 to num_labels.
%
% Hint: The max function might come in useful. In particular, the max
% function can also return the index of the max element, for more
% information see 'help max'. If your examples are in rows, then, you
% can use max(A, [], 2) to obtain the max for each row.
%
X = [ones(m, 1) X];
a2 = [ones(m,1) sigmoid(X*Theta1')];
a3 = sigmoid(a2*Theta2');
[m, p] = max( a3, [], 2 );
% =========================================================================
end

View File

@@ -0,0 +1,39 @@
function p = predictOneVsAll(all_theta, X)
%PREDICT Predict the label for a trained one-vs-all classifier. The labels
%are in the range 1..K, where K = size(all_theta, 1).
% p = PREDICTONEVSALL(all_theta, X) will return a vector of predictions
% for each example in the matrix X. Note that X contains the examples in
% rows. all_theta is a matrix where the i-th row is a trained logistic
% regression theta vector for the i-th class. You should set p to a vector
% of values from 1..K (e.g., p = [1; 3; 1; 2] predicts classes 1, 3, 1, 2
% for 4 examples)
m = size(X, 1);
num_labels = size(all_theta, 1);
% You need to return the following variables correctly
p = zeros(size(X, 1), 1);
% Add ones to the X data matrix
X = [ones(m, 1) X];
% ====================== YOUR CODE HERE ======================
% Instructions: Complete the following code to make predictions using
% your learned logistic regression parameters (one-vs-all).
% You should set p to a vector of predictions (from 1 to
% num_labels).
%
% Hint: This code can be done all vectorized using the max function.
% In particular, the max function can also return the index of the
% max element, for more information see 'help max'. If your examples
% are in rows, then, you can use max(A, [], 2) to obtain the max
% for each row.
%
[m, p] = max( sigmoid( all_theta * X' ) );
p = p';
% =========================================================================
end

View File

@@ -0,0 +1,6 @@
function g = sigmoid(z)
%SIGMOID Compute sigmoid functoon
% J = SIGMOID(z) computes the sigmoid of z.
g = 1.0 ./ (1.0 + exp(-z));
end

View File

@@ -0,0 +1,574 @@
function submit(partId, webSubmit)
%SUBMIT Submit your code and output to the ml-class servers
% SUBMIT() will connect to the ml-class server and submit your solution
fprintf('==\n== [ml-class] Submitting Solutions | Programming Exercise %s\n==\n', ...
homework_id());
if ~exist('partId', 'var') || isempty(partId)
partId = promptPart();
end
if ~exist('webSubmit', 'var') || isempty(webSubmit)
webSubmit = 0; % submit directly by default
end
% Check valid partId
partNames = validParts();
if ~isValidPartId(partId)
fprintf('!! Invalid homework part selected.\n');
fprintf('!! Expected an integer from 1 to %d.\n', numel(partNames) + 1);
fprintf('!! Submission Cancelled\n');
return
end
if ~exist('ml_login_data.mat','file')
[login password] = loginPrompt();
save('ml_login_data.mat','login','password');
else
load('ml_login_data.mat');
[login password] = quickLogin(login, password);
save('ml_login_data.mat','login','password');
end
if isempty(login)
fprintf('!! Submission Cancelled\n');
return
end
fprintf('\n== Connecting to ml-class ... ');
if exist('OCTAVE_VERSION')
fflush(stdout);
end
% Setup submit list
if partId == numel(partNames) + 1
submitParts = 1:numel(partNames);
else
submitParts = [partId];
end
for s = 1:numel(submitParts)
thisPartId = submitParts(s);
if (~webSubmit) % submit directly to server
[login, ch, signature, auxstring] = getChallenge(login, thisPartId);
if isempty(login) || isempty(ch) || isempty(signature)
% Some error occured, error string in first return element.
fprintf('\n!! Error: %s\n\n', login);
return
end
% Attempt Submission with Challenge
ch_resp = challengeResponse(login, password, ch);
[result, str] = submitSolution(login, ch_resp, thisPartId, ...
output(thisPartId, auxstring), source(thisPartId), signature);
partName = partNames{thisPartId};
fprintf('\n== [ml-class] Submitted Assignment %s - Part %d - %s\n', ...
homework_id(), thisPartId, partName);
fprintf('== %s\n', strtrim(str));
if exist('OCTAVE_VERSION')
fflush(stdout);
end
else
[result] = submitSolutionWeb(login, thisPartId, output(thisPartId), ...
source(thisPartId));
result = base64encode(result);
fprintf('\nSave as submission file [submit_ex%s_part%d.txt (enter to accept default)]:', ...
homework_id(), thisPartId);
saveAsFile = input('', 's');
if (isempty(saveAsFile))
saveAsFile = sprintf('submit_ex%s_part%d.txt', homework_id(), thisPartId);
end
fid = fopen(saveAsFile, 'w');
if (fid)
fwrite(fid, result);
fclose(fid);
fprintf('\nSaved your solutions to %s.\n\n', saveAsFile);
fprintf(['You can now submit your solutions through the web \n' ...
'form in the programming exercises. Select the corresponding \n' ...
'programming exercise to access the form.\n']);
else
fprintf('Unable to save to %s\n\n', saveAsFile);
fprintf(['You can create a submission file by saving the \n' ...
'following text in a file: (press enter to continue)\n\n']);
pause;
fprintf(result);
end
end
end
end
% ================== CONFIGURABLES FOR EACH HOMEWORK ==================
function id = homework_id()
id = '3';
end
function [partNames] = validParts()
partNames = { 'Vectorized Logistic Regression ', ...
'One-vs-all classifier training', ...
'One-vs-all classifier prediction', ...
'Neural network prediction function' ...
};
end
function srcs = sources()
% Separated by part
srcs = { { 'lrCostFunction.m' }, ...
{ 'oneVsAll.m' }, ...
{ 'predictOneVsAll.m' }, ...
{ 'predict.m' } };
end
function out = output(partId, auxdata)
% Random Test Cases
X = [ones(20,1) (exp(1) * sin(1:1:20))' (exp(0.5) * cos(1:1:20))'];
y = sin(X(:,1) + X(:,2)) > 0;
Xm = [ -1 -1 ; -1 -2 ; -2 -1 ; -2 -2 ; ...
1 1 ; 1 2 ; 2 1 ; 2 2 ; ...
-1 1 ; -1 2 ; -2 1 ; -2 2 ; ...
1 -1 ; 1 -2 ; -2 -1 ; -2 -2 ];
ym = [ 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 ]';
t1 = sin(reshape(1:2:24, 4, 3));
t2 = cos(reshape(1:2:40, 4, 5));
if partId == 1
[J, grad] = lrCostFunction([0.25 0.5 -0.5]', X, y, 0.1);
out = sprintf('%0.5f ', J);
out = [out sprintf('%0.5f ', grad)];
elseif partId == 2
out = sprintf('%0.5f ', oneVsAll(Xm, ym, 4, 0.1));
elseif partId == 3
out = sprintf('%0.5f ', predictOneVsAll(t1, Xm));
elseif partId == 4
out = sprintf('%0.5f ', predict(t1, t2, Xm));
end
end
% ====================== SERVER CONFIGURATION ===========================
% ***************** REMOVE -staging WHEN YOU DEPLOY *********************
function url = site_url()
url = 'http://class.coursera.org/ml-008';
end
function url = challenge_url()
url = [site_url() '/assignment/challenge'];
end
function url = submit_url()
url = [site_url() '/assignment/submit'];
end
% ========================= CHALLENGE HELPERS =========================
function src = source(partId)
src = '';
src_files = sources();
if partId <= numel(src_files)
flist = src_files{partId};
for i = 1:numel(flist)
fid = fopen(flist{i});
if (fid == -1)
error('Error opening %s (is it missing?)', flist{i});
end
line = fgets(fid);
while ischar(line)
src = [src line];
line = fgets(fid);
end
fclose(fid);
src = [src '||||||||'];
end
end
end
function ret = isValidPartId(partId)
partNames = validParts();
ret = (~isempty(partId)) && (partId >= 1) && (partId <= numel(partNames) + 1);
end
function partId = promptPart()
fprintf('== Select which part(s) to submit:\n');
partNames = validParts();
srcFiles = sources();
for i = 1:numel(partNames)
fprintf('== %d) %s [', i, partNames{i});
fprintf(' %s ', srcFiles{i}{:});
fprintf(']\n');
end
fprintf('== %d) All of the above \n==\nEnter your choice [1-%d]: ', ...
numel(partNames) + 1, numel(partNames) + 1);
selPart = input('', 's');
partId = str2num(selPart);
if ~isValidPartId(partId)
partId = -1;
end
end
function [email,ch,signature,auxstring] = getChallenge(email, part)
str = urlread(challenge_url(), 'post', {'email_address', email, 'assignment_part_sid', [homework_id() '-' num2str(part)], 'response_encoding', 'delim'});
str = strtrim(str);
r = struct;
while(numel(str) > 0)
[f, str] = strtok (str, '|');
[v, str] = strtok (str, '|');
r = setfield(r, f, v);
end
email = getfield(r, 'email_address');
ch = getfield(r, 'challenge_key');
signature = getfield(r, 'state');
auxstring = getfield(r, 'challenge_aux_data');
end
function [result, str] = submitSolutionWeb(email, part, output, source)
result = ['{"assignment_part_sid":"' base64encode([homework_id() '-' num2str(part)], '') '",' ...
'"email_address":"' base64encode(email, '') '",' ...
'"submission":"' base64encode(output, '') '",' ...
'"submission_aux":"' base64encode(source, '') '"' ...
'}'];
str = 'Web-submission';
end
function [result, str] = submitSolution(email, ch_resp, part, output, ...
source, signature)
params = {'assignment_part_sid', [homework_id() '-' num2str(part)], ...
'email_address', email, ...
'submission', base64encode(output, ''), ...
'submission_aux', base64encode(source, ''), ...
'challenge_response', ch_resp, ...
'state', signature};
str = urlread(submit_url(), 'post', params);
% Parse str to read for success / failure
result = 0;
end
% =========================== LOGIN HELPERS ===========================
function [login password] = loginPrompt()
% Prompt for password
[login password] = basicPrompt();
if isempty(login) || isempty(password)
login = []; password = [];
end
end
function [login password] = basicPrompt()
login = input('Login (Email address): ', 's');
password = input('Password: ', 's');
end
function [login password] = quickLogin(login,password)
disp(['You are currently logged in as ' login '.']);
cont_token = input('Is this you? (y/n - type n to reenter password)','s');
if(isempty(cont_token) || cont_token(1)=='Y'||cont_token(1)=='y')
return;
else
[login password] = loginPrompt();
end
end
function [str] = challengeResponse(email, passwd, challenge)
str = sha1([challenge passwd]);
end
% =============================== SHA-1 ================================
function hash = sha1(str)
% Initialize variables
h0 = uint32(1732584193);
h1 = uint32(4023233417);
h2 = uint32(2562383102);
h3 = uint32(271733878);
h4 = uint32(3285377520);
% Convert to word array
strlen = numel(str);
% Break string into chars and append the bit 1 to the message
mC = [double(str) 128];
mC = [mC zeros(1, 4-mod(numel(mC), 4), 'uint8')];
numB = strlen * 8;
if exist('idivide')
numC = idivide(uint32(numB + 65), 512, 'ceil');
else
numC = ceil(double(numB + 65)/512);
end
numW = numC * 16;
mW = zeros(numW, 1, 'uint32');
idx = 1;
for i = 1:4:strlen + 1
mW(idx) = bitor(bitor(bitor( ...
bitshift(uint32(mC(i)), 24), ...
bitshift(uint32(mC(i+1)), 16)), ...
bitshift(uint32(mC(i+2)), 8)), ...
uint32(mC(i+3)));
idx = idx + 1;
end
% Append length of message
mW(numW - 1) = uint32(bitshift(uint64(numB), -32));
mW(numW) = uint32(bitshift(bitshift(uint64(numB), 32), -32));
% Process the message in successive 512-bit chs
for cId = 1 : double(numC)
cSt = (cId - 1) * 16 + 1;
cEnd = cId * 16;
ch = mW(cSt : cEnd);
% Extend the sixteen 32-bit words into eighty 32-bit words
for j = 17 : 80
ch(j) = ch(j - 3);
ch(j) = bitxor(ch(j), ch(j - 8));
ch(j) = bitxor(ch(j), ch(j - 14));
ch(j) = bitxor(ch(j), ch(j - 16));
ch(j) = bitrotate(ch(j), 1);
end
% Initialize hash value for this ch
a = h0;
b = h1;
c = h2;
d = h3;
e = h4;
% Main loop
for i = 1 : 80
if(i >= 1 && i <= 20)
f = bitor(bitand(b, c), bitand(bitcmp(b), d));
k = uint32(1518500249);
elseif(i >= 21 && i <= 40)
f = bitxor(bitxor(b, c), d);
k = uint32(1859775393);
elseif(i >= 41 && i <= 60)
f = bitor(bitor(bitand(b, c), bitand(b, d)), bitand(c, d));
k = uint32(2400959708);
elseif(i >= 61 && i <= 80)
f = bitxor(bitxor(b, c), d);
k = uint32(3395469782);
end
t = bitrotate(a, 5);
t = bitadd(t, f);
t = bitadd(t, e);
t = bitadd(t, k);
t = bitadd(t, ch(i));
e = d;
d = c;
c = bitrotate(b, 30);
b = a;
a = t;
end
h0 = bitadd(h0, a);
h1 = bitadd(h1, b);
h2 = bitadd(h2, c);
h3 = bitadd(h3, d);
h4 = bitadd(h4, e);
end
hash = reshape(dec2hex(double([h0 h1 h2 h3 h4]), 8)', [1 40]);
hash = lower(hash);
end
function ret = bitadd(iA, iB)
ret = double(iA) + double(iB);
ret = bitset(ret, 33, 0);
ret = uint32(ret);
end
function ret = bitrotate(iA, places)
t = bitshift(iA, places - 32);
ret = bitshift(iA, places);
ret = bitor(ret, t);
end
% =========================== Base64 Encoder ============================
% Thanks to Peter John Acklam
%
function y = base64encode(x, eol)
%BASE64ENCODE Perform base64 encoding on a string.
%
% BASE64ENCODE(STR, EOL) encode the given string STR. EOL is the line ending
% sequence to use; it is optional and defaults to '\n' (ASCII decimal 10).
% The returned encoded string is broken into lines of no more than 76
% characters each, and each line will end with EOL unless it is empty. Let
% EOL be empty if you do not want the encoded string broken into lines.
%
% STR and EOL don't have to be strings (i.e., char arrays). The only
% requirement is that they are vectors containing values in the range 0-255.
%
% This function may be used to encode strings into the Base64 encoding
% specified in RFC 2045 - MIME (Multipurpose Internet Mail Extensions). The
% Base64 encoding is designed to represent arbitrary sequences of octets in a
% form that need not be humanly readable. A 65-character subset
% ([A-Za-z0-9+/=]) of US-ASCII is used, enabling 6 bits to be represented per
% printable character.
%
% Examples
% --------
%
% If you want to encode a large file, you should encode it in chunks that are
% a multiple of 57 bytes. This ensures that the base64 lines line up and
% that you do not end up with padding in the middle. 57 bytes of data fills
% one complete base64 line (76 == 57*4/3):
%
% If ifid and ofid are two file identifiers opened for reading and writing,
% respectively, then you can base64 encode the data with
%
% while ~feof(ifid)
% fwrite(ofid, base64encode(fread(ifid, 60*57)));
% end
%
% or, if you have enough memory,
%
% fwrite(ofid, base64encode(fread(ifid)));
%
% See also BASE64DECODE.
% Author: Peter John Acklam
% Time-stamp: 2004-02-03 21:36:56 +0100
% E-mail: pjacklam@online.no
% URL: http://home.online.no/~pjacklam
if isnumeric(x)
x = num2str(x);
end
% make sure we have the EOL value
if nargin < 2
eol = sprintf('\n');
else
if sum(size(eol) > 1) > 1
error('EOL must be a vector.');
end
if any(eol(:) > 255)
error('EOL can not contain values larger than 255.');
end
end
if sum(size(x) > 1) > 1
error('STR must be a vector.');
end
x = uint8(x);
eol = uint8(eol);
ndbytes = length(x); % number of decoded bytes
nchunks = ceil(ndbytes / 3); % number of chunks/groups
nebytes = 4 * nchunks; % number of encoded bytes
% add padding if necessary, to make the length of x a multiple of 3
if rem(ndbytes, 3)
x(end+1 : 3*nchunks) = 0;
end
x = reshape(x, [3, nchunks]); % reshape the data
y = repmat(uint8(0), 4, nchunks); % for the encoded data
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Split up every 3 bytes into 4 pieces
%
% aaaaaabb bbbbcccc ccdddddd
%
% to form
%
% 00aaaaaa 00bbbbbb 00cccccc 00dddddd
%
y(1,:) = bitshift(x(1,:), -2); % 6 highest bits of x(1,:)
y(2,:) = bitshift(bitand(x(1,:), 3), 4); % 2 lowest bits of x(1,:)
y(2,:) = bitor(y(2,:), bitshift(x(2,:), -4)); % 4 highest bits of x(2,:)
y(3,:) = bitshift(bitand(x(2,:), 15), 2); % 4 lowest bits of x(2,:)
y(3,:) = bitor(y(3,:), bitshift(x(3,:), -6)); % 2 highest bits of x(3,:)
y(4,:) = bitand(x(3,:), 63); % 6 lowest bits of x(3,:)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Now perform the following mapping
%
% 0 - 25 -> A-Z
% 26 - 51 -> a-z
% 52 - 61 -> 0-9
% 62 -> +
% 63 -> /
%
% We could use a mapping vector like
%
% ['A':'Z', 'a':'z', '0':'9', '+/']
%
% but that would require an index vector of class double.
%
z = repmat(uint8(0), size(y));
i = y <= 25; z(i) = 'A' + double(y(i));
i = 26 <= y & y <= 51; z(i) = 'a' - 26 + double(y(i));
i = 52 <= y & y <= 61; z(i) = '0' - 52 + double(y(i));
i = y == 62; z(i) = '+';
i = y == 63; z(i) = '/';
y = z;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Add padding if necessary.
%
npbytes = 3 * nchunks - ndbytes; % number of padding bytes
if npbytes
y(end-npbytes+1 : end) = '='; % '=' is used for padding
end
if isempty(eol)
% reshape to a row vector
y = reshape(y, [1, nebytes]);
else
nlines = ceil(nebytes / 76); % number of lines
neolbytes = length(eol); % number of bytes in eol string
% pad data so it becomes a multiple of 76 elements
y = [y(:) ; zeros(76 * nlines - numel(y), 1)];
y(nebytes + 1 : 76 * nlines) = 0;
y = reshape(y, 76, nlines);
% insert eol strings
eol = eol(:);
y(end + 1 : end + neolbytes, :) = eol(:, ones(1, nlines));
% remove padding, but keep the last eol string
m = nebytes + neolbytes * (nlines - 1);
n = (76+neolbytes)*nlines - neolbytes;
y(m+1 : n) = '';
% extract and reshape to row vector
y = reshape(y, 1, m+neolbytes);
end
% output is a character array
y = char(y);
end

View File

@@ -0,0 +1,20 @@
% submitWeb Creates files from your code and output for web submission.
%
% If the submit function does not work for you, use the web-submission mechanism.
% Call this function to produce a file for the part you wish to submit. Then,
% submit the file to the class servers using the "Web Submission" button on the
% Programming Exercises page on the course website.
%
% You should call this function without arguments (submitWeb), to receive
% an interactive prompt for submission; optionally you can call it with the partID
% if you so wish. Make sure your working directory is set to the directory
% containing the submitWeb.m file and your assignment files.
function submitWeb(partId)
if ~exist('partId', 'var') || isempty(partId)
partId = [];
end
submit(partId, 1);
end

164
machine_learning/test.m Normal file
View File

@@ -0,0 +1,164 @@
%VIM: let g:flags=""
%
a = 3
b = 'hi'
b
a = pi
c = (3 >= 1 )
disp(sprintf('2 decimals: %0.2f', a ))
format long
a
format short
a
A = [1 2; 3 4; 5 6] % define matrix
v = [1 2 3] % row vector
v = [1; 2; 3] % column vector
v = 1:0.2:2 % vector from 1 to 2 with 0.2 increments
v = 1:6 % vector 1 to 6
ones(2,3) % matrix of ones
2*ones(2,3)
zeros(3,1) % matrix of zeros
eye(4) % identity matrix
rand(2,3) % matrix of random numbers
randn(2,3) % matrix of normal distribution random numbers
w = -6 + sqrt(10)*randn(1,10000)
hist(w,50) % histogram
size(A) % sizes of matrix as a row vector
size(A,1) % number of rows
size(A,2) % number of columns
length(v) % length of a matrix
%load( 'file name' ) % load data from a file
who % what variables do I have.
whos % detailed who
%v = priceY(1:10)
%save savedfile.mat v
%save savedfile.mat v -ascii
clear % remove variables
A = [1 2; 3 4; 5 6 ]
A(3,2) % element on third row and second column
A(3,:) % third row
A(:,2) % second column
A([1 3], :) % matrix from 1 and 3 rows
A(:,2) = [10; 11; 12] % assign to second column
A = [A, [100; 101; 102]] % append to matrix
B = [ 3 3; 5 6; 6 7]
C = [ A B ] % append to the right
D = [ A; B ] % append at bottom
A' % transpos
A * B' % matrix mul
A .* B % element vice mult
A .^2 % element vice square
v = [ 1; 2; 3 ]
1 ./ v % reciprocal of v
1 ./ A
log(v) % element vice log
exp(v)
abs(v)
-v
v + ones(lenght(v), 1)
v + 1 % same as of above
a = [2 3 4 5]
max(a) % max element in a
[val, ind] = max(a) % val = max elem, ind = the index of elem
a < 3 % elem vice compare
find(a < 3)
A = magic(3)
[r,c] = find(A>=7)
sum(a)
prod(a)
floor(a)
ceil(a)
max( rand(3), rand(3) ) % elem vice max of two 3x3 matrices
max ( A, [], 1 ) % row vice max
max(A) % column vice max
A = magic(9)
sum(A,1)
A .* eye(9)
sum( sum( A.*eye(9))) % sum of diagonal elements
flipud( eye(9)) %flip up down
pinv(A) %pseudo inverse of A
%============================
t=[0:0.01:0.98];
y1 = sin(2*pi*4*t)
plot(t,y1);
y2 = cos(2*pi*4*t)
plot(t,y1);
hold on;
plot(t,y1,r);
xlabel('time')
ylabel('value')
legend('sin','cos')
title('my plot')
print -dpng 'myPlot.png'
close
figure(1); plot(t,y1);
figure(2); plot(t,y2);
subplot(1,2,1);
axis
A= magic(5);
imagesc(A);
imagesc(A),colorbar,colormap gray;
%============================
v = zero(10,1)
for i=1:10,
v(i) = 2^i;
end;
while i <= 5,
v(i) = 100;
i = i+1;
if i == 4, %elseif else
break;
end;
end;
%put into a separate file with the same name
function y = functionName( x )
y = x^2;
function [y1,y2] = functionName( x )
y1 = x^2;
y2 = x^3;
%help eye

View File

@@ -1,20 +0,0 @@

Microsoft Visual Studio Solution File, Format Version 9.00
# Visual Studio 2005
Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "mergeTwoFiles", "mergeTwoFiles.vcproj", "{F07269AD-FE36-43E5-A832-92D5FC475DE2}"
EndProject
Global
GlobalSection(SolutionConfigurationPlatforms) = preSolution
Debug|Win32 = Debug|Win32
Release|Win32 = Release|Win32
EndGlobalSection
GlobalSection(ProjectConfigurationPlatforms) = postSolution
{F07269AD-FE36-43E5-A832-92D5FC475DE2}.Debug|Win32.ActiveCfg = Debug|Win32
{F07269AD-FE36-43E5-A832-92D5FC475DE2}.Debug|Win32.Build.0 = Debug|Win32
{F07269AD-FE36-43E5-A832-92D5FC475DE2}.Release|Win32.ActiveCfg = Release|Win32
{F07269AD-FE36-43E5-A832-92D5FC475DE2}.Release|Win32.Build.0 = Release|Win32
EndGlobalSection
GlobalSection(SolutionProperties) = preSolution
HideSolutionNode = FALSE
EndGlobalSection
EndGlobal

View File

@@ -1,225 +0,0 @@
<?xml version="1.0" encoding="windows-1251"?>
<VisualStudioProject
ProjectType="Visual C++"
Version="8.00"
Name="mergeTwoFiles"
ProjectGUID="{F07269AD-FE36-43E5-A832-92D5FC475DE2}"
RootNamespace="mergeTwoFiles"
Keyword="Win32Proj"
>
<Platforms>
<Platform
Name="Win32"
/>
</Platforms>
<ToolFiles>
</ToolFiles>
<Configurations>
<Configuration
Name="Debug|Win32"
OutputDirectory="$(SolutionDir)$(ConfigurationName)"
IntermediateDirectory="$(ConfigurationName)"
ConfigurationType="1"
CharacterSet="1"
>
<Tool
Name="VCPreBuildEventTool"
/>
<Tool
Name="VCCustomBuildTool"
/>
<Tool
Name="VCXMLDataGeneratorTool"
/>
<Tool
Name="VCWebServiceProxyGeneratorTool"
/>
<Tool
Name="VCMIDLTool"
/>
<Tool
Name="VCCLCompilerTool"
Optimization="0"
PreprocessorDefinitions="WIN32;_DEBUG;_CONSOLE"
MinimalRebuild="true"
BasicRuntimeChecks="3"
RuntimeLibrary="3"
UsePrecompiledHeader="2"
WarningLevel="3"
Detect64BitPortabilityProblems="true"
DebugInformationFormat="4"
/>
<Tool
Name="VCManagedResourceCompilerTool"
/>
<Tool
Name="VCResourceCompilerTool"
/>
<Tool
Name="VCPreLinkEventTool"
/>
<Tool
Name="VCLinkerTool"
LinkIncremental="2"
GenerateDebugInformation="true"
SubSystem="1"
TargetMachine="1"
/>
<Tool
Name="VCALinkTool"
/>
<Tool
Name="VCManifestTool"
/>
<Tool
Name="VCXDCMakeTool"
/>
<Tool
Name="VCBscMakeTool"
/>
<Tool
Name="VCFxCopTool"
/>
<Tool
Name="VCAppVerifierTool"
/>
<Tool
Name="VCWebDeploymentTool"
/>
<Tool
Name="VCPostBuildEventTool"
/>
</Configuration>
<Configuration
Name="Release|Win32"
OutputDirectory="$(SolutionDir)$(ConfigurationName)"
IntermediateDirectory="$(ConfigurationName)"
ConfigurationType="1"
CharacterSet="1"
WholeProgramOptimization="1"
>
<Tool
Name="VCPreBuildEventTool"
/>
<Tool
Name="VCCustomBuildTool"
/>
<Tool
Name="VCXMLDataGeneratorTool"
/>
<Tool
Name="VCWebServiceProxyGeneratorTool"
/>
<Tool
Name="VCMIDLTool"
/>
<Tool
Name="VCCLCompilerTool"
PreprocessorDefinitions="WIN32;NDEBUG;_CONSOLE"
RuntimeLibrary="2"
UsePrecompiledHeader="2"
WarningLevel="3"
Detect64BitPortabilityProblems="true"
DebugInformationFormat="3"
/>
<Tool
Name="VCManagedResourceCompilerTool"
/>
<Tool
Name="VCResourceCompilerTool"
/>
<Tool
Name="VCPreLinkEventTool"
/>
<Tool
Name="VCLinkerTool"
LinkIncremental="1"
GenerateDebugInformation="true"
SubSystem="1"
OptimizeReferences="2"
EnableCOMDATFolding="2"
TargetMachine="1"
/>
<Tool
Name="VCALinkTool"
/>
<Tool
Name="VCManifestTool"
/>
<Tool
Name="VCXDCMakeTool"
/>
<Tool
Name="VCBscMakeTool"
/>
<Tool
Name="VCFxCopTool"
/>
<Tool
Name="VCAppVerifierTool"
/>
<Tool
Name="VCWebDeploymentTool"
/>
<Tool
Name="VCPostBuildEventTool"
/>
</Configuration>
</Configurations>
<References>
</References>
<Files>
<Filter
Name="Source Files"
Filter="cpp;c;cc;cxx;def;odl;idl;hpj;bat;asm;asmx"
UniqueIdentifier="{4FC737F1-C7A5-4376-A066-2A32D752A2FF}"
>
<File
RelativePath=".\mergeTwoFiles.cpp"
>
</File>
<File
RelativePath=".\stdafx.cpp"
>
<FileConfiguration
Name="Debug|Win32"
>
<Tool
Name="VCCLCompilerTool"
UsePrecompiledHeader="1"
/>
</FileConfiguration>
<FileConfiguration
Name="Release|Win32"
>
<Tool
Name="VCCLCompilerTool"
UsePrecompiledHeader="1"
/>
</FileConfiguration>
</File>
</Filter>
<Filter
Name="Header Files"
Filter="h;hpp;hxx;hm;inl;inc;xsd"
UniqueIdentifier="{93995380-89BD-4b04-88EB-625FBE52EBFB}"
>
<File
RelativePath=".\stdafx.h"
>
</File>
</Filter>
<Filter
Name="Resource Files"
Filter="rc;ico;cur;bmp;dlg;rc2;rct;bin;rgs;gif;jpg;jpeg;jpe;resx;tiff;tif;png;wav"
UniqueIdentifier="{67DA6AB6-F800-4c08-8B7A-83BB121AAD01}"
>
</Filter>
<File
RelativePath=".\ReadMe.txt"
>
</File>
</Files>
<Globals>
</Globals>
</VisualStudioProject>

View File

@@ -1,8 +0,0 @@
// stdafx.cpp : source file that includes just the standard includes
// mergeTwoFiles.pch will be the pre-compiled header
// stdafx.obj will contain the pre-compiled type information
#include "stdafx.h"
// TODO: reference any additional headers you need in STDAFX.H
// and not in this file

View File

@@ -1,17 +0,0 @@
// stdafx.h : include file for standard system include files,
// or project specific include files that are used frequently, but
// are changed infrequently
//
#pragma once
#ifndef _WIN32_WINNT // Allow use of features specific to Windows XP or later.
#define _WIN32_WINNT 0x0501 // Change this to the appropriate value to target other versions of Windows.
#endif
#include <stdio.h>
#include <tchar.h>
// TODO: reference additional headers your program requires here

View File

@@ -0,0 +1,271 @@
/*
VIM: let g:lcppflags="-std=c++11 -O2 -pthread"
VIM: let g:wcppflags="/O2 /EHsc /DWIN32"
VIM: let g:argv=""
ID 971852
*/
#include <iostream>
#include <exception>
/*
Given a Roman number as a string (eg "XX") determine
its integer value (eg 20).
You cannot write numerals like IM for 999.
Wikipedia states "Modern Roman numerals are written by
expressing each digit separately starting with the
leftmost digit and skipping any digit with a value of zero."
Examples:
"I" -> 1 | "X" -> 10 | "C" -> 100 | "M" -> 1000
"II" -> 2 | "XX" -> 20 | "CC" -> 200 | "MM" -> 2000
"III" -> 3 | "XXX" -> 30 | "CCC" -> 300 | "MMM" -> 3000
"IV" -> 4 | "XL" -> 40 | "CD" -> 400 | "MMMM" -> 4000
"V" -> 5 | "L" -> 50 | "D" -> 500 |
"VI" -> 6 | "LX" -> 60 | "DC" -> 600 |
"VII" -> 7 | "LXX" -> 70 | "DCC" -> 700 |
"VIII" -> 8 | "LXXX" -> 80 | "DCCC" -> 800 |
"IX" -> 9 | "XC" -> 90 | "CM" -> 900 |
"MCMXC" -> 1990 ("M" -> 1000 + "CM" -> 900 + "XC" -> 90)
"MMVIII" -> 2008 ("MM" -> 2000 + "VIII" -> 8)
"XCIX" -> 99 ("XC" -> 90 + "IX" -> 9)
"XLVII" -> 47 ("XL" -> 40 + "VII" -> 7)
*/
int roman2num( const char * roman_num ) {
//
// Possible digits.
//
enum digits { D_I = 0, D_V, D_X, D_L, D_C, D_D, D_M, D_ERR };
//
// The states of parser. The names of states are quite intuitive. The
// vI, lX, dC are the states corresponding to patterns VI+, LX+, DC+
// when the first I,X,C letters are seen.
//
enum states {
S = 0, /* START state. */
I, vI, II, III, IV, V, IX,
X, lX, XX, XXX, XL, L, XC,
C, dC, CC, CCC, CD, D, CM,
M, MM, MMM, MMMM,
E /* ERROR state */
};
//
// This table defines state transition for each character seen.
//
static const char state_table[][8] = {
/* I, V, X, L, C, D, M, D_ERR */
{ I, V, X, L, C, D, M, E}, //S
{ II, IV, IX, E, E, E, E, E}, //I
{ II, E, E, E, E, E, E, E}, //vI
{III, E, E, E, E, E, E, E}, //II
{ E, E, E, E, E, E, E, E}, //III
{ E, E, E, E, E, E, E, E}, //IV
{ vI, E, E, E, E, E, E, E}, //V
{ E, E, E, E, E, E, E, E}, //IX
{ I, V, XX, XL, XC, E, E, E}, //X
{ I, V, XX, E, E, E, E, E}, //lX
{ I, V,XXX, E, E, E, E, E}, //XX
{ I, V, E, E, E, E, E, E}, //XXX
{ I, V, E, E, E, E, E, E}, //XL
{ I, V, lX, E, E, E, E, E}, //L
{ I, V, E, E, E, E, E, E}, //XC
{ I, V, X, L, CC, CD, CM, E}, //C
{ I, V, X, L, CC, E, E, E}, //dC
{ I, V, X, L,CCC, E, E, E}, //CC
{ I, V, X, L, E, E, E, E}, //CCC
{ I, V, X, L, E, E, E, E}, //CD
{ I, V, X, L, dC, E, E, E}, //D
{ I, V, X, L, E, E, E, E}, //CM
{ I, V, X, L, C, D, MM, E}, //M
{ I, V, X, L, C, D, MMM, E}, //MM
{ I, V, X, L, C, D, MMMM, E}, //MMM
{ I, V, X, L, C, D, E, E}, //MMMM
{ E, E, E, E, E, E, E, E} //E
};
//
// Each state transition causes an increment of the number with
// certain value defined in this table.
// A state transition happens for each character we read, hence when
// defining the increment value of complex states such as II,III,IV,...
// please take into consideration what amount increment we already have.
// For example the state XL is defined as 30 since we already added 10 when
// we see X.
//
static const short increment[] = {
//S This is here to preserve alignment only.
0,
// I, vI, II, III, IV, V, IX
1, 1, 1, 1, 3, 5, 8,
// X, lX, XX, XXX, XL, L, XC
10, 10, 10, 10, 30, 50, 80,
// C, dC, CC, CCC, CD, D, CM,
100, 100, 100, 100, 300, 500, 800,
// M, MM, MMM, MMMM */
1000, 1000, 1000, 1000,
//E This is the error condition. The value doesn't really matter.
0
};
//
// Ideally this had to be a table based lookup.
//
auto chr2digit = []( char ch ) {
switch (ch) {
case 'I' : return D_I;
case 'V' : return D_V;
case 'X' : return D_X;
case 'L' : return D_L;
case 'C' : return D_C;
case 'D' : return D_D;
case 'M' : return D_M;
default : return D_ERR;
}
};
//
// Here the algorithm begins.
//
if ( !roman_num )
return -1;
int num = 0;
int state = S;
for ( const char * e = roman_num; *e && state < E; ++e ) {
state = state_table[state][chr2digit(*e)];
num += increment[state];
}
if ( state >= E )
return -1;
return num;
}
void ASSERT_EQ( int golden, int ret ) {
if ( ret != golden )
std::cout << "FAIL: Expected " << golden << " got " << ret << std::endl;
}
int main ( void )
{try{
ASSERT_EQ(0, roman2num(""));
ASSERT_EQ(1, roman2num("I"));
ASSERT_EQ(2, roman2num("II"));
ASSERT_EQ(3, roman2num("III"));
ASSERT_EQ(4, roman2num("IV"));
ASSERT_EQ(5, roman2num("V"));
ASSERT_EQ(6, roman2num("VI"));
ASSERT_EQ(7, roman2num("VII"));
ASSERT_EQ(8, roman2num("VIII"));
ASSERT_EQ(9, roman2num("IX"));
ASSERT_EQ(10, roman2num("X"));
ASSERT_EQ(20, roman2num("XX"));
ASSERT_EQ(30, roman2num("XXX"));
ASSERT_EQ(40, roman2num("XL"));
ASSERT_EQ(50, roman2num("L"));
ASSERT_EQ(60, roman2num("LX"));
ASSERT_EQ(70, roman2num("LXX"));
ASSERT_EQ(80, roman2num("LXXX"));
ASSERT_EQ(90, roman2num("XC"));
ASSERT_EQ(100, roman2num("C"));
ASSERT_EQ(200, roman2num("CC"));
ASSERT_EQ(300, roman2num("CCC"));
ASSERT_EQ(400, roman2num("CD"));
ASSERT_EQ(500, roman2num("D"));
ASSERT_EQ(600, roman2num("DC"));
ASSERT_EQ(700, roman2num("DCC"));
ASSERT_EQ(800, roman2num("DCCC"));
ASSERT_EQ(900, roman2num("CM"));
ASSERT_EQ(1000, roman2num("M"));
ASSERT_EQ(2000, roman2num("MM"));
ASSERT_EQ(3000, roman2num("MMM"));
ASSERT_EQ(4000, roman2num("MMMM"));
ASSERT_EQ(1990, roman2num("MCMXC"));
ASSERT_EQ(2008, roman2num("MMVIII"));
ASSERT_EQ(91, roman2num("XCI"));
ASSERT_EQ(99, roman2num("XCIX"));
ASSERT_EQ(47, roman2num("XLVII"));
ASSERT_EQ(3888, roman2num("MMMDCCCLXXXVIII"));
ASSERT_EQ(4888, roman2num("MMMMDCCCLXXXVIII"));
ASSERT_EQ(4999, roman2num("MMMMCMXCIX"));
static const char * num [] = {
"","I","II","III","IV","V","VI","VII","VIII","IX",
"","X","XX","XXX","XL","L","LX","LXX","LXXX","XC",
"","C","CC","CCC","CD","D","DC","DCC","DCCC","CM",
"","M","MM","MMM","MMMM"
};
for ( int i = 0; i < 5000; ++i ) {
int d4 = i/1000;
int d3 = i%1000/100;
int d2 = i%100/10;
int d1 = i%10;
std::string test = num[30+d4];
test +=num[20+d3];
test +=num[10+d2];
test +=num[d1];
ASSERT_EQ(i, roman2num(test.c_str()));
}
//
// Negative cases.
//
ASSERT_EQ(-1, roman2num(0));
ASSERT_EQ(-1, roman2num("IXLVII"));
ASSERT_EQ(-1, roman2num("IIII"));
ASSERT_EQ(-1, roman2num("VV"));
ASSERT_EQ(-1, roman2num("XXXX"));
ASSERT_EQ(-1, roman2num("LL"));
ASSERT_EQ(-1, roman2num("CCCC"));
ASSERT_EQ(-1, roman2num("DD"));
ASSERT_EQ(-1, roman2num("MMMMM"));
ASSERT_EQ(-1, roman2num("IIV"));
ASSERT_EQ(-1, roman2num("IVI"));
ASSERT_EQ(-1, roman2num("IIX"));
ASSERT_EQ(-1, roman2num("IXI"));
ASSERT_EQ(-1, roman2num("XXC"));
ASSERT_EQ(-1, roman2num("XCX"));
ASSERT_EQ(-1, roman2num("XXL"));
ASSERT_EQ(-1, roman2num("XLX"));
ASSERT_EQ(-1, roman2num("CCM"));
ASSERT_EQ(-1, roman2num("CMC"));
ASSERT_EQ(-1, roman2num("CCD"));
ASSERT_EQ(-1, roman2num("CDC"));
ASSERT_EQ(-1, roman2num("c"));
ASSERT_EQ(-1, roman2num("l"));
ASSERT_EQ(-1, roman2num("x"));
ASSERT_EQ(-1, roman2num("v"));
ASSERT_EQ(-1, roman2num("v"));
ASSERT_EQ(-1, roman2num("v"));
ASSERT_EQ(-1, roman2num("v"));
ASSERT_EQ(-1, roman2num("1"));
ASSERT_EQ(-1, roman2num("2"));
ASSERT_EQ(-1, roman2num("a"));
ASSERT_EQ(-1, roman2num("."));
return 0;
}
catch ( const std::exception& e )
{
std::cerr << std::endl
<< "std::exception(\"" << e.what() << "\")." << std::endl;
return 2;
}
catch ( ... )
{
std::cerr << std::endl
<< "unknown exception." << std::endl;
return 1;
}}

Some files were not shown because too many files have changed in this diff Show More