Project euler problem 67.
This commit is contained in:
@@ -1,30 +1,34 @@
|
||||
/* Check cf5-opt.vim defs.
|
||||
VIM: let g:lcppflags="-std=c++11 -O2 -pthread"
|
||||
VIM: let g:wcppflags="/O2 /EHsc /DWIN32"
|
||||
VIM: let g:argv=""
|
||||
VIM-: let g:cf5output=0
|
||||
*/
|
||||
#include <iostream>
|
||||
#include <exception>
|
||||
#Maximum path sum II
|
||||
#Problem 67
|
||||
#
|
||||
#By starting at the top of the triangle below and moving to adjacent numbers on
|
||||
#the row below, the maximum total from top to bottom is 23.
|
||||
#
|
||||
#3
|
||||
#7 4
|
||||
#2 4 6
|
||||
#8 5 9 3
|
||||
#
|
||||
#That is, 3 + 7 + 4 + 9 = 23.
|
||||
#
|
||||
#Find the maximum total from top to bottom in triangle.txt (right click and
|
||||
#'Save Link/Target As...'), a 15K text file containing a triangle with
|
||||
#one-hundred rows.
|
||||
#
|
||||
#NOTE: This is a much more difficult version of Problem 18. It is not possible
|
||||
#to try every route to solve this problem, as there are 299 altogether! If you
|
||||
#could check one trillion (1012) routes every second it would take over twenty
|
||||
#billion years to check them all. There is an efficient algorithm to solve it. ;o)
|
||||
|
||||
/*
|
||||
*/
|
||||
f = open( "p067_triangle.txt", "r" )
|
||||
a = [[ int(n) for n in line.split(' ') ] for line in f]
|
||||
|
||||
for i in reversed(range(0,len(a)-1)):
|
||||
for j in range(0,len(a[i])):
|
||||
a[i][j] += max(a[i+1][j],a[i+1][j+1])
|
||||
|
||||
|
||||
print(a[0][0])
|
||||
|
||||
int main ( void )
|
||||
{try{
|
||||
|
||||
return 0;
|
||||
}
|
||||
catch ( const std::exception& e )
|
||||
{
|
||||
std::cerr << std::endl
|
||||
<< "std::exception(\"" << e.what() << "\")." << std::endl;
|
||||
return 2;
|
||||
}
|
||||
catch ( ... )
|
||||
{
|
||||
std::cerr << std::endl
|
||||
<< "unknown exception." << std::endl;
|
||||
return 1;
|
||||
}}
|
||||
|
||||
|
||||
Reference in New Issue
Block a user