Project Euler: http://projecteuler.net/
This commit is contained in:
36
ProjectEuler/p012_HighlyDivisibleTriangularNumber.cpp
Normal file
36
ProjectEuler/p012_HighlyDivisibleTriangularNumber.cpp
Normal file
@@ -0,0 +1,36 @@
|
||||
/* Check cf5-opt.vim defs.
|
||||
VIM: let g:lcppflags="-std=c++11 -O2 -pthread"
|
||||
VIM: let g:wcppflags="/O2 /EHsc /DWIN32"
|
||||
*/
|
||||
#include <iostream>
|
||||
|
||||
/*
|
||||
Highly divisible triangular number
|
||||
Problem 12
|
||||
|
||||
The sequence of triangle numbers is generated by adding the natural numbers. So the 7th triangle number would be 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28. The first ten terms would be:
|
||||
|
||||
1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ...
|
||||
|
||||
Let us list the factors of the first seven triangle numbers:
|
||||
|
||||
1: 1
|
||||
3: 1,3
|
||||
6: 1,2,3,6
|
||||
10: 1,2,5,10
|
||||
15: 1,3,5,15
|
||||
21: 1,3,7,21
|
||||
28: 1,2,4,7,14,28
|
||||
We can see that 28 is the first triangle number to have over five divisors.
|
||||
|
||||
What is the value of the first triangle number to have over five hundred divisors?
|
||||
|
||||
Solution:
|
||||
*/
|
||||
|
||||
int main ( void )
|
||||
{
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user