Moving course1 to course1 subdir.
This commit is contained in:
175
machine_learning/course1/mlclass-ex8-008/mlclass-ex8/fmincg.m
Executable file
175
machine_learning/course1/mlclass-ex8-008/mlclass-ex8/fmincg.m
Executable file
@@ -0,0 +1,175 @@
|
||||
function [X, fX, i] = fmincg(f, X, options, P1, P2, P3, P4, P5)
|
||||
% Minimize a continuous differentialble multivariate function. Starting point
|
||||
% is given by "X" (D by 1), and the function named in the string "f", must
|
||||
% return a function value and a vector of partial derivatives. The Polack-
|
||||
% Ribiere flavour of conjugate gradients is used to compute search directions,
|
||||
% and a line search using quadratic and cubic polynomial approximations and the
|
||||
% Wolfe-Powell stopping criteria is used together with the slope ratio method
|
||||
% for guessing initial step sizes. Additionally a bunch of checks are made to
|
||||
% make sure that exploration is taking place and that extrapolation will not
|
||||
% be unboundedly large. The "length" gives the length of the run: if it is
|
||||
% positive, it gives the maximum number of line searches, if negative its
|
||||
% absolute gives the maximum allowed number of function evaluations. You can
|
||||
% (optionally) give "length" a second component, which will indicate the
|
||||
% reduction in function value to be expected in the first line-search (defaults
|
||||
% to 1.0). The function returns when either its length is up, or if no further
|
||||
% progress can be made (ie, we are at a minimum, or so close that due to
|
||||
% numerical problems, we cannot get any closer). If the function terminates
|
||||
% within a few iterations, it could be an indication that the function value
|
||||
% and derivatives are not consistent (ie, there may be a bug in the
|
||||
% implementation of your "f" function). The function returns the found
|
||||
% solution "X", a vector of function values "fX" indicating the progress made
|
||||
% and "i" the number of iterations (line searches or function evaluations,
|
||||
% depending on the sign of "length") used.
|
||||
%
|
||||
% Usage: [X, fX, i] = fmincg(f, X, options, P1, P2, P3, P4, P5)
|
||||
%
|
||||
% See also: checkgrad
|
||||
%
|
||||
% Copyright (C) 2001 and 2002 by Carl Edward Rasmussen. Date 2002-02-13
|
||||
%
|
||||
%
|
||||
% (C) Copyright 1999, 2000 & 2001, Carl Edward Rasmussen
|
||||
%
|
||||
% Permission is granted for anyone to copy, use, or modify these
|
||||
% programs and accompanying documents for purposes of research or
|
||||
% education, provided this copyright notice is retained, and note is
|
||||
% made of any changes that have been made.
|
||||
%
|
||||
% These programs and documents are distributed without any warranty,
|
||||
% express or implied. As the programs were written for research
|
||||
% purposes only, they have not been tested to the degree that would be
|
||||
% advisable in any important application. All use of these programs is
|
||||
% entirely at the user's own risk.
|
||||
%
|
||||
% [ml-class] Changes Made:
|
||||
% 1) Function name and argument specifications
|
||||
% 2) Output display
|
||||
%
|
||||
|
||||
% Read options
|
||||
if exist('options', 'var') && ~isempty(options) && isfield(options, 'MaxIter')
|
||||
length = options.MaxIter;
|
||||
else
|
||||
length = 100;
|
||||
end
|
||||
|
||||
|
||||
RHO = 0.01; % a bunch of constants for line searches
|
||||
SIG = 0.5; % RHO and SIG are the constants in the Wolfe-Powell conditions
|
||||
INT = 0.1; % don't reevaluate within 0.1 of the limit of the current bracket
|
||||
EXT = 3.0; % extrapolate maximum 3 times the current bracket
|
||||
MAX = 20; % max 20 function evaluations per line search
|
||||
RATIO = 100; % maximum allowed slope ratio
|
||||
|
||||
argstr = ['feval(f, X']; % compose string used to call function
|
||||
for i = 1:(nargin - 3)
|
||||
argstr = [argstr, ',P', int2str(i)];
|
||||
end
|
||||
argstr = [argstr, ')'];
|
||||
|
||||
if max(size(length)) == 2, red=length(2); length=length(1); else red=1; end
|
||||
S=['Iteration '];
|
||||
|
||||
i = 0; % zero the run length counter
|
||||
ls_failed = 0; % no previous line search has failed
|
||||
fX = [];
|
||||
[f1 df1] = eval(argstr); % get function value and gradient
|
||||
i = i + (length<0); % count epochs?!
|
||||
s = -df1; % search direction is steepest
|
||||
d1 = -s'*s; % this is the slope
|
||||
z1 = red/(1-d1); % initial step is red/(|s|+1)
|
||||
|
||||
while i < abs(length) % while not finished
|
||||
i = i + (length>0); % count iterations?!
|
||||
|
||||
X0 = X; f0 = f1; df0 = df1; % make a copy of current values
|
||||
X = X + z1*s; % begin line search
|
||||
[f2 df2] = eval(argstr);
|
||||
i = i + (length<0); % count epochs?!
|
||||
d2 = df2'*s;
|
||||
f3 = f1; d3 = d1; z3 = -z1; % initialize point 3 equal to point 1
|
||||
if length>0, M = MAX; else M = min(MAX, -length-i); end
|
||||
success = 0; limit = -1; % initialize quanteties
|
||||
while 1
|
||||
while ((f2 > f1+z1*RHO*d1) | (d2 > -SIG*d1)) & (M > 0)
|
||||
limit = z1; % tighten the bracket
|
||||
if f2 > f1
|
||||
z2 = z3 - (0.5*d3*z3*z3)/(d3*z3+f2-f3); % quadratic fit
|
||||
else
|
||||
A = 6*(f2-f3)/z3+3*(d2+d3); % cubic fit
|
||||
B = 3*(f3-f2)-z3*(d3+2*d2);
|
||||
z2 = (sqrt(B*B-A*d2*z3*z3)-B)/A; % numerical error possible - ok!
|
||||
end
|
||||
if isnan(z2) | isinf(z2)
|
||||
z2 = z3/2; % if we had a numerical problem then bisect
|
||||
end
|
||||
z2 = max(min(z2, INT*z3),(1-INT)*z3); % don't accept too close to limits
|
||||
z1 = z1 + z2; % update the step
|
||||
X = X + z2*s;
|
||||
[f2 df2] = eval(argstr);
|
||||
M = M - 1; i = i + (length<0); % count epochs?!
|
||||
d2 = df2'*s;
|
||||
z3 = z3-z2; % z3 is now relative to the location of z2
|
||||
end
|
||||
if f2 > f1+z1*RHO*d1 | d2 > -SIG*d1
|
||||
break; % this is a failure
|
||||
elseif d2 > SIG*d1
|
||||
success = 1; break; % success
|
||||
elseif M == 0
|
||||
break; % failure
|
||||
end
|
||||
A = 6*(f2-f3)/z3+3*(d2+d3); % make cubic extrapolation
|
||||
B = 3*(f3-f2)-z3*(d3+2*d2);
|
||||
z2 = -d2*z3*z3/(B+sqrt(B*B-A*d2*z3*z3)); % num. error possible - ok!
|
||||
if ~isreal(z2) | isnan(z2) | isinf(z2) | z2 < 0 % num prob or wrong sign?
|
||||
if limit < -0.5 % if we have no upper limit
|
||||
z2 = z1 * (EXT-1); % the extrapolate the maximum amount
|
||||
else
|
||||
z2 = (limit-z1)/2; % otherwise bisect
|
||||
end
|
||||
elseif (limit > -0.5) & (z2+z1 > limit) % extraplation beyond max?
|
||||
z2 = (limit-z1)/2; % bisect
|
||||
elseif (limit < -0.5) & (z2+z1 > z1*EXT) % extrapolation beyond limit
|
||||
z2 = z1*(EXT-1.0); % set to extrapolation limit
|
||||
elseif z2 < -z3*INT
|
||||
z2 = -z3*INT;
|
||||
elseif (limit > -0.5) & (z2 < (limit-z1)*(1.0-INT)) % too close to limit?
|
||||
z2 = (limit-z1)*(1.0-INT);
|
||||
end
|
||||
f3 = f2; d3 = d2; z3 = -z2; % set point 3 equal to point 2
|
||||
z1 = z1 + z2; X = X + z2*s; % update current estimates
|
||||
[f2 df2] = eval(argstr);
|
||||
M = M - 1; i = i + (length<0); % count epochs?!
|
||||
d2 = df2'*s;
|
||||
end % end of line search
|
||||
|
||||
if success % if line search succeeded
|
||||
f1 = f2; fX = [fX' f1]';
|
||||
fprintf('%s %4i | Cost: %4.6e\r', S, i, f1);
|
||||
s = (df2'*df2-df1'*df2)/(df1'*df1)*s - df2; % Polack-Ribiere direction
|
||||
tmp = df1; df1 = df2; df2 = tmp; % swap derivatives
|
||||
d2 = df1'*s;
|
||||
if d2 > 0 % new slope must be negative
|
||||
s = -df1; % otherwise use steepest direction
|
||||
d2 = -s'*s;
|
||||
end
|
||||
z1 = z1 * min(RATIO, d1/(d2-realmin)); % slope ratio but max RATIO
|
||||
d1 = d2;
|
||||
ls_failed = 0; % this line search did not fail
|
||||
else
|
||||
X = X0; f1 = f0; df1 = df0; % restore point from before failed line search
|
||||
if ls_failed | i > abs(length) % line search failed twice in a row
|
||||
break; % or we ran out of time, so we give up
|
||||
end
|
||||
tmp = df1; df1 = df2; df2 = tmp; % swap derivatives
|
||||
s = -df1; % try steepest
|
||||
d1 = -s'*s;
|
||||
z1 = 1/(1-d1);
|
||||
ls_failed = 1; % this line search failed
|
||||
end
|
||||
if exist('OCTAVE_VERSION')
|
||||
fflush(stdout);
|
||||
end
|
||||
end
|
||||
fprintf('\n');
|
||||
Reference in New Issue
Block a user