Moving course1 to course1 subdir.
This commit is contained in:
33
machine_learning/course1/mlclass-ex7-008/mlclass-ex7/pca.m
Executable file
33
machine_learning/course1/mlclass-ex7-008/mlclass-ex7/pca.m
Executable file
@@ -0,0 +1,33 @@
|
||||
function [U, S] = pca(X)
|
||||
%PCA Run principal component analysis on the dataset X
|
||||
% [U, S, X] = pca(X) computes eigenvectors of the covariance matrix of X
|
||||
% Returns the eigenvectors U, the eigenvalues (on diagonal) in S
|
||||
%
|
||||
|
||||
% Useful values
|
||||
[m, n] = size(X);
|
||||
|
||||
% You need to return the following variables correctly.
|
||||
U = zeros(n);
|
||||
S = zeros(n);
|
||||
|
||||
% ====================== YOUR CODE HERE ======================
|
||||
% Instructions: You should first compute the covariance matrix. Then, you
|
||||
% should use the "svd" function to compute the eigenvectors
|
||||
% and eigenvalues of the covariance matrix.
|
||||
%
|
||||
% Note: When computing the covariance matrix, remember to divide by m (the
|
||||
% number of examples).
|
||||
%
|
||||
M = X'*X / m;
|
||||
|
||||
[U S x ] = svd(M);
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
% =========================================================================
|
||||
|
||||
end
|
||||
Reference in New Issue
Block a user