Moving course1 to course1 subdir.
This commit is contained in:
45
machine_learning/course1/mlclass-ex6-008/mlclass-ex6/dataset3Params.m
Executable file
45
machine_learning/course1/mlclass-ex6-008/mlclass-ex6/dataset3Params.m
Executable file
@@ -0,0 +1,45 @@
|
||||
function [C, sigma] = dataset3Params(X, y, Xval, yval)
|
||||
%EX6PARAMS returns your choice of C and sigma for Part 3 of the exercise
|
||||
%where you select the optimal (C, sigma) learning parameters to use for SVM
|
||||
%with RBF kernel
|
||||
% [C, sigma] = EX6PARAMS(X, y, Xval, yval) returns your choice of C and
|
||||
% sigma. You should complete this function to return the optimal C and
|
||||
% sigma based on a cross-validation set.
|
||||
%
|
||||
|
||||
% You need to return the following variables correctly.
|
||||
C = 1;
|
||||
sigma = 0.3;
|
||||
|
||||
% ====================== YOUR CODE HERE ======================
|
||||
% Instructions: Fill in this function to return the optimal C and sigma
|
||||
% learning parameters found using the cross validation set.
|
||||
% You can use svmPredict to predict the labels on the cross
|
||||
% validation set. For example,
|
||||
% predictions = svmPredict(model, Xval);
|
||||
% will return the predictions on the cross validation set.
|
||||
%
|
||||
% Note: You can compute the prediction error using
|
||||
% mean(double(predictions ~= yval))
|
||||
%
|
||||
|
||||
merr = 1000000000;
|
||||
|
||||
for i=-4:3
|
||||
for j=-4:3
|
||||
c = exp(i); % this will generate sequance close to
|
||||
s = exp(j); % 0.01 0.03 0.1 0.3 1 3 10 30
|
||||
model= svmTrain(X, y, c, @(x1, x2) gaussianKernel(x1, x2, s));
|
||||
predictions = svmPredict(model, Xval);
|
||||
err = mean(double(predictions ~= yval));
|
||||
if err < merr
|
||||
C = c;
|
||||
sigma = s;
|
||||
merr = err;
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
% =========================================================================
|
||||
|
||||
end
|
||||
Reference in New Issue
Block a user