Moving course1 to course1 subdir.

This commit is contained in:
2017-02-12 08:17:57 +00:00
parent f26649af32
commit 0f459c597c
143 changed files with 0 additions and 0 deletions

View File

@@ -0,0 +1,45 @@
function [C, sigma] = dataset3Params(X, y, Xval, yval)
%EX6PARAMS returns your choice of C and sigma for Part 3 of the exercise
%where you select the optimal (C, sigma) learning parameters to use for SVM
%with RBF kernel
% [C, sigma] = EX6PARAMS(X, y, Xval, yval) returns your choice of C and
% sigma. You should complete this function to return the optimal C and
% sigma based on a cross-validation set.
%
% You need to return the following variables correctly.
C = 1;
sigma = 0.3;
% ====================== YOUR CODE HERE ======================
% Instructions: Fill in this function to return the optimal C and sigma
% learning parameters found using the cross validation set.
% You can use svmPredict to predict the labels on the cross
% validation set. For example,
% predictions = svmPredict(model, Xval);
% will return the predictions on the cross validation set.
%
% Note: You can compute the prediction error using
% mean(double(predictions ~= yval))
%
merr = 1000000000;
for i=-4:3
for j=-4:3
c = exp(i); % this will generate sequance close to
s = exp(j); % 0.01 0.03 0.1 0.3 1 3 10 30
model= svmTrain(X, y, c, @(x1, x2) gaussianKernel(x1, x2, s));
predictions = svmPredict(model, Xval);
err = mean(double(predictions ~= yval));
if err < merr
C = c;
sigma = s;
merr = err;
end
end
end
% =========================================================================
end