Moving course1 to course1 subdir.
This commit is contained in:
@@ -0,0 +1,28 @@
|
||||
function plotFit(min_x, max_x, mu, sigma, theta, p)
|
||||
%PLOTFIT Plots a learned polynomial regression fit over an existing figure.
|
||||
%Also works with linear regression.
|
||||
% PLOTFIT(min_x, max_x, mu, sigma, theta, p) plots the learned polynomial
|
||||
% fit with power p and feature normalization (mu, sigma).
|
||||
|
||||
% Hold on to the current figure
|
||||
hold on;
|
||||
|
||||
% We plot a range slightly bigger than the min and max values to get
|
||||
% an idea of how the fit will vary outside the range of the data points
|
||||
x = (min_x - 15: 0.05 : max_x + 25)';
|
||||
|
||||
% Map the X values
|
||||
X_poly = polyFeatures(x, p);
|
||||
X_poly = bsxfun(@minus, X_poly, mu);
|
||||
X_poly = bsxfun(@rdivide, X_poly, sigma);
|
||||
|
||||
% Add ones
|
||||
X_poly = [ones(size(x, 1), 1) X_poly];
|
||||
|
||||
% Plot
|
||||
plot(x, X_poly * theta, '--', 'LineWidth', 2)
|
||||
|
||||
% Hold off to the current figure
|
||||
hold off
|
||||
|
||||
end
|
||||
Reference in New Issue
Block a user