Moving course1 to course1 subdir.
This commit is contained in:
@@ -0,0 +1,33 @@
|
||||
function [J, grad] = linearRegCostFunction(X, y, theta, lambda)
|
||||
%LINEARREGCOSTFUNCTION Compute cost and gradient for regularized linear
|
||||
%regression with multiple variables
|
||||
% [J, grad] = LINEARREGCOSTFUNCTION(X, y, theta, lambda) computes the
|
||||
% cost of using theta as the parameter for linear regression to fit the
|
||||
% data points in X and y. Returns the cost in J and the gradient in grad
|
||||
|
||||
% Initialize some useful values
|
||||
m = length(y); % number of training examples
|
||||
|
||||
% You need to return the following variables correctly
|
||||
J = 0;
|
||||
grad = zeros(size(theta));
|
||||
|
||||
% ====================== YOUR CODE HERE ======================
|
||||
% Instructions: Compute the cost and gradient of regularized linear
|
||||
% regression for a particular choice of theta.
|
||||
%
|
||||
% You should set J to the cost and grad to the gradient.
|
||||
%
|
||||
|
||||
reg = theta;
|
||||
reg(1) = 0;
|
||||
|
||||
J = sum( (X*theta - y) .^ 2 ) / (2*m) + (lambda/(2*m))*sum(reg.^2);
|
||||
grad = (X' * (X*theta-y) / m) + (lambda/m) * reg;
|
||||
|
||||
|
||||
% =========================================================================
|
||||
|
||||
grad = grad(:);
|
||||
|
||||
end
|
||||
Reference in New Issue
Block a user