Moving course1 to course1 subdir.
This commit is contained in:
@@ -0,0 +1,67 @@
|
||||
function [error_train, error_val] = ...
|
||||
learningCurve(X, y, Xval, yval, lambda)
|
||||
%LEARNINGCURVE Generates the train and cross validation set errors needed
|
||||
%to plot a learning curve
|
||||
% [error_train, error_val] = ...
|
||||
% LEARNINGCURVE(X, y, Xval, yval, lambda) returns the train and
|
||||
% cross validation set errors for a learning curve. In particular,
|
||||
% it returns two vectors of the same length - error_train and
|
||||
% error_val. Then, error_train(i) contains the training error for
|
||||
% i examples (and similarly for error_val(i)).
|
||||
%
|
||||
% In this function, you will compute the train and test errors for
|
||||
% dataset sizes from 1 up to m. In practice, when working with larger
|
||||
% datasets, you might want to do this in larger intervals.
|
||||
%
|
||||
|
||||
% Number of training examples
|
||||
m = size(X, 1);
|
||||
|
||||
% You need to return these values correctly
|
||||
error_train = zeros(m, 1);
|
||||
error_val = zeros(m, 1);
|
||||
|
||||
% ====================== YOUR CODE HERE ======================
|
||||
% Instructions: Fill in this function to return training errors in
|
||||
% error_train and the cross validation errors in error_val.
|
||||
% i.e., error_train(i) and
|
||||
% error_val(i) should give you the errors
|
||||
% obtained after training on i examples.
|
||||
%
|
||||
% Note: You should evaluate the training error on the first i training
|
||||
% examples (i.e., X(1:i, :) and y(1:i)).
|
||||
%
|
||||
% For the cross-validation error, you should instead evaluate on
|
||||
% the _entire_ cross validation set (Xval and yval).
|
||||
%
|
||||
% Note: If you are using your cost function (linearRegCostFunction)
|
||||
% to compute the training and cross validation error, you should
|
||||
% call the function with the lambda argument set to 0.
|
||||
% Do note that you will still need to use lambda when running
|
||||
% the training to obtain the theta parameters.
|
||||
%
|
||||
% Hint: You can loop over the examples with the following:
|
||||
%
|
||||
% for i = 1:m
|
||||
% % Compute train/cross validation errors using training examples
|
||||
% % X(1:i, :) and y(1:i), storing the result in
|
||||
% % error_train(i) and error_val(i)
|
||||
% ....
|
||||
%
|
||||
% end
|
||||
%
|
||||
|
||||
% ---------------------- Sample Solution ----------------------
|
||||
mval = size(Xval,1);
|
||||
|
||||
for i = 1:m
|
||||
theta = trainLinearReg(X(1:i,:), y(1:i), lambda);
|
||||
error_train(i) = sum( (X(1:i,:)*theta - y(1:i)) .^ 2 ) / (2*i);
|
||||
error_val(i) = sum( (Xval*theta - yval) .^ 2 ) / (2*mval);
|
||||
end
|
||||
|
||||
% -------------------------------------------------------------
|
||||
|
||||
% =========================================================================
|
||||
|
||||
end
|
||||
Reference in New Issue
Block a user