Moving course1 to course1 subdir.
This commit is contained in:
220
machine_learning/course1/mlclass-ex5-008/mlclass-ex5/ex5.m
Normal file
220
machine_learning/course1/mlclass-ex5-008/mlclass-ex5/ex5.m
Normal file
@@ -0,0 +1,220 @@
|
||||
%% Machine Learning Online Class
|
||||
% Exercise 5 | Regularized Linear Regression and Bias-Variance
|
||||
%
|
||||
% Instructions
|
||||
% ------------
|
||||
%
|
||||
% This file contains code that helps you get started on the
|
||||
% exercise. You will need to complete the following functions:
|
||||
%
|
||||
% linearRegCostFunction.m
|
||||
% learningCurve.m
|
||||
% validationCurve.m
|
||||
%
|
||||
% For this exercise, you will not need to change any code in this file,
|
||||
% or any other files other than those mentioned above.
|
||||
%
|
||||
|
||||
%% Initialization
|
||||
%clear ; close all; clc
|
||||
|
||||
%% =========== Part 1: Loading and Visualizing Data =============
|
||||
% We start the exercise by first loading and visualizing the dataset.
|
||||
% The following code will load the dataset into your environment and plot
|
||||
% the data.
|
||||
%
|
||||
|
||||
% Load Training Data
|
||||
fprintf('Loading and Visualizing Data ...\n')
|
||||
|
||||
% Load from ex5data1:
|
||||
% You will have X, y, Xval, yval, Xtest, ytest in your environment
|
||||
load ('ex5data1.mat');
|
||||
|
||||
% m = Number of examples
|
||||
m = size(X, 1);
|
||||
|
||||
% Plot training data
|
||||
%plot(X, y, 'rx', 'MarkerSize', 10, 'LineWidth', 1.5);
|
||||
%xlabel('Change in water level (x)');
|
||||
%ylabel('Water flowing out of the dam (y)');
|
||||
|
||||
%fprintf('Program paused. Press enter to continue.\n');
|
||||
%pause;
|
||||
|
||||
%% =========== Part 2: Regularized Linear Regression Cost =============
|
||||
% You should now implement the cost function for regularized linear
|
||||
% regression.
|
||||
%
|
||||
|
||||
theta = [1 ; 1];
|
||||
J = linearRegCostFunction([ones(m, 1) X], y, theta, 1);
|
||||
|
||||
fprintf(['Cost at theta = [1 ; 1]: %f '...
|
||||
'\n(this value should be about 303.993192)\n'], J);
|
||||
|
||||
fprintf('Program paused. Press enter to continue.\n');
|
||||
pause;
|
||||
|
||||
%% =========== Part 3: Regularized Linear Regression Gradient =============
|
||||
% You should now implement the gradient for regularized linear
|
||||
% regression.
|
||||
%
|
||||
|
||||
theta = [1 ; 1];
|
||||
[J, grad] = linearRegCostFunction([ones(m, 1) X], y, theta, 1);
|
||||
|
||||
fprintf(['Gradient at theta = [1 ; 1]: [%f; %f] '...
|
||||
'\n(this value should be about [-15.303016; 598.250744])\n'], ...
|
||||
grad(1), grad(2));
|
||||
|
||||
fprintf('Program paused. Press enter to continue.\n');
|
||||
pause;
|
||||
|
||||
|
||||
%% =========== Part 4: Train Linear Regression =============
|
||||
% Once you have implemented the cost and gradient correctly, the
|
||||
% trainLinearReg function will use your cost function to train
|
||||
% regularized linear regression.
|
||||
%
|
||||
% Write Up Note: The data is non-linear, so this will not give a great
|
||||
% fit.
|
||||
%
|
||||
|
||||
% Train linear regression with lambda = 0
|
||||
lambda = 0;
|
||||
[theta] = trainLinearReg([ones(m, 1) X], y, lambda);
|
||||
|
||||
% Plot fit over the data
|
||||
%plot(X, y, 'rx', 'MarkerSize', 10, 'LineWidth', 1.5);
|
||||
%xlabel('Change in water level (x)');
|
||||
%ylabel('Water flowing out of the dam (y)');
|
||||
%hold on;
|
||||
%plot(X, [ones(m, 1) X]*theta, '--', 'LineWidth', 2)
|
||||
%hold off;
|
||||
|
||||
fprintf('Program paused. Press enter to continue.\n');
|
||||
%pause;
|
||||
|
||||
|
||||
%% =========== Part 5: Learning Curve for Linear Regression =============
|
||||
% Next, you should implement the learningCurve function.
|
||||
%
|
||||
% Write Up Note: Since the model is underfitting the data, we expect to
|
||||
% see a graph with "high bias" -- slide 8 in ML-advice.pdf
|
||||
%
|
||||
|
||||
lambda = 0;
|
||||
[error_train, error_val] = ...
|
||||
learningCurve([ones(m, 1) X], y, ...
|
||||
[ones(size(Xval, 1), 1) Xval], yval, ...
|
||||
lambda);
|
||||
|
||||
%plot(1:m, error_train, 1:m, error_val);
|
||||
%title('Learning curve for linear regression')
|
||||
%legend('Train', 'Cross Validation')
|
||||
%xlabel('Number of training examples')
|
||||
%ylabel('Error')
|
||||
%axis([0 13 0 150])
|
||||
|
||||
fprintf('# Training Examples\tTrain Error\tCross Validation Error\n');
|
||||
for i = 1:m
|
||||
fprintf(' \t%d\t\t%f\t%f\n', i, error_train(i), error_val(i));
|
||||
end
|
||||
|
||||
fprintf('Program paused. Press enter to continue.\n');
|
||||
pause;
|
||||
|
||||
%% =========== Part 6: Feature Mapping for Polynomial Regression =============
|
||||
% One solution to this is to use polynomial regression. You should now
|
||||
% complete polyFeatures to map each example into its powers
|
||||
%
|
||||
|
||||
p = 8;
|
||||
|
||||
% Map X onto Polynomial Features and Normalize
|
||||
X_poly = polyFeatures(X, p);
|
||||
[X_poly, mu, sigma] = featureNormalize(X_poly); % Normalize
|
||||
X_poly = [ones(m, 1), X_poly]; % Add Ones
|
||||
|
||||
% Map X_poly_test and normalize (using mu and sigma)
|
||||
X_poly_test = polyFeatures(Xtest, p);
|
||||
X_poly_test = bsxfun(@minus, X_poly_test, mu);
|
||||
X_poly_test = bsxfun(@rdivide, X_poly_test, sigma);
|
||||
X_poly_test = [ones(size(X_poly_test, 1), 1), X_poly_test]; % Add Ones
|
||||
|
||||
% Map X_poly_val and normalize (using mu and sigma)
|
||||
X_poly_val = polyFeatures(Xval, p);
|
||||
X_poly_val = bsxfun(@minus, X_poly_val, mu);
|
||||
X_poly_val = bsxfun(@rdivide, X_poly_val, sigma);
|
||||
X_poly_val = [ones(size(X_poly_val, 1), 1), X_poly_val]; % Add Ones
|
||||
|
||||
fprintf('Normalized Training Example 1:\n');
|
||||
fprintf(' %f \n', X_poly(1, :));
|
||||
|
||||
fprintf('\nProgram paused. Press enter to continue.\n');
|
||||
pause;
|
||||
|
||||
|
||||
|
||||
%% =========== Part 7: Learning Curve for Polynomial Regression =============
|
||||
% Now, you will get to experiment with polynomial regression with multiple
|
||||
% values of lambda. The code below runs polynomial regression with
|
||||
% lambda = 0. You should try running the code with different values of
|
||||
% lambda to see how the fit and learning curve change.
|
||||
%
|
||||
|
||||
lambda = 0;
|
||||
[theta] = trainLinearReg(X_poly, y, lambda);
|
||||
|
||||
% Plot training data and fit
|
||||
%figure(1);
|
||||
%plot(X, y, 'rx', 'MarkerSize', 10, 'LineWidth', 1.5);
|
||||
%plotFit(min(X), max(X), mu, sigma, theta, p);
|
||||
%xlabel('Change in water level (x)');
|
||||
%ylabel('Water flowing out of the dam (y)');
|
||||
%title (sprintf('Polynomial Regression Fit (lambda = %f)', lambda));
|
||||
|
||||
figure(2);
|
||||
[error_train, error_val] = ...
|
||||
learningCurve(X_poly, y, X_poly_val, yval, lambda);
|
||||
%plot(1:m, error_train, 1:m, error_val);
|
||||
|
||||
%title(sprintf('Polynomial Regression Learning Curve (lambda = %f)', lambda));
|
||||
%xlabel('Number of training examples')
|
||||
%ylabel('Error')
|
||||
%axis([0 13 0 100])
|
||||
%legend('Train', 'Cross Validation')
|
||||
|
||||
fprintf('Polynomial Regression (lambda = %f)\n\n', lambda);
|
||||
fprintf('# Training Examples\tTrain Error\tCross Validation Error\n');
|
||||
for i = 1:m
|
||||
fprintf(' \t%d\t\t%f\t%f\n', i, error_train(i), error_val(i));
|
||||
end
|
||||
|
||||
fprintf('Program paused. Press enter to continue.\n');
|
||||
pause;
|
||||
|
||||
%% =========== Part 8: Validation for Selecting Lambda =============
|
||||
% You will now implement validationCurve to test various values of
|
||||
% lambda on a validation set. You will then use this to select the
|
||||
% "best" lambda value.
|
||||
%
|
||||
|
||||
[lambda_vec, error_train, error_val] = ...
|
||||
validationCurve(X_poly, y, X_poly_val, yval);
|
||||
|
||||
%close all;
|
||||
%plot(lambda_vec, error_train, lambda_vec, error_val);
|
||||
%legend('Train', 'Cross Validation');
|
||||
%xlabel('lambda');
|
||||
%ylabel('Error');
|
||||
|
||||
fprintf('lambda\t\tTrain Error\tValidation Error\n');
|
||||
for i = 1:length(lambda_vec)
|
||||
fprintf(' %f\t%f\t%f\n', ...
|
||||
lambda_vec(i), error_train(i), error_val(i));
|
||||
end
|
||||
|
||||
fprintf('Program paused. Press enter to continue.\n');
|
||||
pause;
|
||||
Reference in New Issue
Block a user