Moving course1 to course1 subdir.
This commit is contained in:
234
machine_learning/course1/mlclass-ex4-008/mlclass-ex4/ex4.m
Normal file
234
machine_learning/course1/mlclass-ex4-008/mlclass-ex4/ex4.m
Normal file
@@ -0,0 +1,234 @@
|
||||
%% Machine Learning Online Class - Exercise 4 Neural Network Learning
|
||||
|
||||
% Instructions
|
||||
% ------------
|
||||
%
|
||||
% This file contains code that helps you get started on the
|
||||
% linear exercise. You will need to complete the following functions
|
||||
% in this exericse:
|
||||
%
|
||||
% sigmoidGradient.m
|
||||
% randInitializeWeights.m
|
||||
% nnCostFunction.m
|
||||
%
|
||||
% For this exercise, you will not need to change any code in this file,
|
||||
% or any other files other than those mentioned above.
|
||||
%
|
||||
|
||||
%% Initialization
|
||||
clear ; close all; clc
|
||||
|
||||
%% Setup the parameters you will use for this exercise
|
||||
input_layer_size = 400; % 20x20 Input Images of Digits
|
||||
hidden_layer_size = 25; % 25 hidden units
|
||||
num_labels = 10; % 10 labels, from 1 to 10
|
||||
% (note that we have mapped "0" to label 10)
|
||||
|
||||
%% =========== Part 1: Loading and Visualizing Data =============
|
||||
% We start the exercise by first loading and visualizing the dataset.
|
||||
% You will be working with a dataset that contains handwritten digits.
|
||||
%
|
||||
|
||||
% Load Training Data
|
||||
fprintf('Loading and Visualizing Data ...\n')
|
||||
|
||||
load('ex4data1.mat');
|
||||
m = size(X, 1);
|
||||
|
||||
% Randomly select 100 data points to display
|
||||
%sel = randperm(size(X, 1));
|
||||
%sel = sel(1:100);
|
||||
|
||||
%displayData(X(sel, :));
|
||||
|
||||
%fprintf('Program paused. Press enter to continue.\n');
|
||||
%pause;
|
||||
|
||||
|
||||
%% ================ Part 2: Loading Parameters ================
|
||||
% In this part of the exercise, we load some pre-initialized
|
||||
% neural network parameters.
|
||||
|
||||
fprintf('\nLoading Saved Neural Network Parameters ...\n')
|
||||
|
||||
% Load the weights into variables Theta1 and Theta2
|
||||
load('ex4weights.mat');
|
||||
|
||||
% Unroll parameters
|
||||
nn_params = [Theta1(:) ; Theta2(:)];
|
||||
|
||||
%% ================ Part 3: Compute Cost (Feedforward) ================
|
||||
% To the neural network, you should first start by implementing the
|
||||
% feedforward part of the neural network that returns the cost only. You
|
||||
% should complete the code in nnCostFunction.m to return cost. After
|
||||
% implementing the feedforward to compute the cost, you can verify that
|
||||
% your implementation is correct by verifying that you get the same cost
|
||||
% as us for the fixed debugging parameters.
|
||||
%
|
||||
% We suggest implementing the feedforward cost *without* regularization
|
||||
% first so that it will be easier for you to debug. Later, in part 4, you
|
||||
% will get to implement the regularized cost.
|
||||
%
|
||||
fprintf('\nFeedforward Using Neural Network ...\n')
|
||||
|
||||
% Weight regularization parameter (we set this to 0 here).
|
||||
lambda = 0;
|
||||
|
||||
J = nnCostFunction(nn_params, input_layer_size, hidden_layer_size, ...
|
||||
num_labels, X, y, lambda);
|
||||
|
||||
fprintf(['Cost at parameters (loaded from ex4weights): %f '...
|
||||
'\n(this value should be about 0.287629)\n'], J);
|
||||
|
||||
fprintf('\nProgram paused. Press enter to continue.\n');
|
||||
%pause;
|
||||
|
||||
%% =============== Part 4: Implement Regularization ===============
|
||||
% Once your cost function implementation is correct, you should now
|
||||
% continue to implement the regularization with the cost.
|
||||
%
|
||||
|
||||
fprintf('\nChecking Cost Function (w/ Regularization) ... \n')
|
||||
|
||||
% Weight regularization parameter (we set this to 1 here).
|
||||
lambda = 1;
|
||||
|
||||
J = nnCostFunction(nn_params, input_layer_size, hidden_layer_size, ...
|
||||
num_labels, X, y, lambda);
|
||||
|
||||
fprintf(['Cost at parameters (loaded from ex4weights): %f '...
|
||||
'\n(this value should be about 0.383770)\n'], J);
|
||||
|
||||
fprintf('Program paused. Press enter to continue.\n');
|
||||
%pause;
|
||||
|
||||
|
||||
%% ================ Part 5: Sigmoid Gradient ================
|
||||
% Before you start implementing the neural network, you will first
|
||||
% implement the gradient for the sigmoid function. You should complete the
|
||||
% code in the sigmoidGradient.m file.
|
||||
%
|
||||
|
||||
fprintf('\nEvaluating sigmoid gradient...\n')
|
||||
|
||||
g = sigmoidGradient([1 -0.5 0 0.5 1]);
|
||||
fprintf('Sigmoid gradient evaluated at [1 -0.5 0 0.5 1]:\n ');
|
||||
fprintf('%f ', g);
|
||||
fprintf('\n\n');
|
||||
|
||||
fprintf('Program paused. Press enter to continue.\n');
|
||||
pause;
|
||||
|
||||
|
||||
%% ================ Part 6: Initializing Pameters ================
|
||||
% In this part of the exercise, you will be starting to implment a two
|
||||
% layer neural network that classifies digits. You will start by
|
||||
% implementing a function to initialize the weights of the neural network
|
||||
% (randInitializeWeights.m)
|
||||
|
||||
fprintf('\nInitializing Neural Network Parameters ...\n')
|
||||
|
||||
initial_Theta1 = randInitializeWeights(input_layer_size, hidden_layer_size);
|
||||
initial_Theta2 = randInitializeWeights(hidden_layer_size, num_labels);
|
||||
|
||||
% Unroll parameters
|
||||
initial_nn_params = [initial_Theta1(:) ; initial_Theta2(:)];
|
||||
|
||||
|
||||
%% =============== Part 7: Implement Backpropagation ===============
|
||||
% Once your cost matches up with ours, you should proceed to implement the
|
||||
% backpropagation algorithm for the neural network. You should add to the
|
||||
% code you've written in nnCostFunction.m to return the partial
|
||||
% derivatives of the parameters.
|
||||
%
|
||||
fprintf('\nChecking Backpropagation... \n');
|
||||
|
||||
% Check gradients by running checkNNGradients
|
||||
checkNNGradients;
|
||||
|
||||
fprintf('\nProgram paused. Press enter to continue.\n');
|
||||
pause;
|
||||
|
||||
|
||||
%% =============== Part 8: Implement Regularization ===============
|
||||
% Once your backpropagation implementation is correct, you should now
|
||||
% continue to implement the regularization with the cost and gradient.
|
||||
%
|
||||
|
||||
fprintf('\nChecking Backpropagation (w/ Regularization) ... \n')
|
||||
|
||||
% Check gradients by running checkNNGradients
|
||||
lambda = 3;
|
||||
checkNNGradients(lambda);
|
||||
|
||||
% Also output the costFunction debugging values
|
||||
debug_J = nnCostFunction(nn_params, input_layer_size, ...
|
||||
hidden_layer_size, num_labels, X, y, lambda);
|
||||
|
||||
fprintf(['\n\nCost at (fixed) debugging parameters (w/ lambda = 10): %f ' ...
|
||||
'\n(this value should be about 0.576051)\n\n'], debug_J);
|
||||
|
||||
fprintf('Program paused. Press enter to continue.\n');
|
||||
pause;
|
||||
|
||||
|
||||
%% =================== Part 8: Training NN ===================
|
||||
% You have now implemented all the code necessary to train a neural
|
||||
% network. To train your neural network, we will now use "fmincg", which
|
||||
% is a function which works similarly to "fminunc". Recall that these
|
||||
% advanced optimizers are able to train our cost functions efficiently as
|
||||
% long as we provide them with the gradient computations.
|
||||
%
|
||||
fprintf('\nTraining Neural Network... \n')
|
||||
|
||||
% After you have completed the assignment, change the MaxIter to a larger
|
||||
% value to see how more training helps.
|
||||
options = optimset('MaxIter', 50);
|
||||
|
||||
% You should also try different values of lambda
|
||||
lambda = 1;
|
||||
|
||||
% Create "short hand" for the cost function to be minimized
|
||||
costFunction = @(p) nnCostFunction(p, ...
|
||||
input_layer_size, ...
|
||||
hidden_layer_size, ...
|
||||
num_labels, X, y, lambda);
|
||||
|
||||
% Now, costFunction is a function that takes in only one argument (the
|
||||
% neural network parameters)
|
||||
[nn_params, cost] = fmincg(costFunction, initial_nn_params, options);
|
||||
|
||||
% Obtain Theta1 and Theta2 back from nn_params
|
||||
Theta1 = reshape(nn_params(1:hidden_layer_size * (input_layer_size + 1)), ...
|
||||
hidden_layer_size, (input_layer_size + 1));
|
||||
|
||||
Theta2 = reshape(nn_params((1 + (hidden_layer_size * (input_layer_size + 1))):end), ...
|
||||
num_labels, (hidden_layer_size + 1));
|
||||
|
||||
fprintf('Program paused. Press enter to continue.\n');
|
||||
pause;
|
||||
|
||||
|
||||
%% ================= Part 9: Visualize Weights =================
|
||||
% You can now "visualize" what the neural network is learning by
|
||||
% displaying the hidden units to see what features they are capturing in
|
||||
% the data.
|
||||
|
||||
%fprintf('\nVisualizing Neural Network... \n')
|
||||
|
||||
%displayData(Theta1(:, 2:end));
|
||||
|
||||
%fprintf('\nProgram paused. Press enter to continue.\n');
|
||||
%pause;
|
||||
|
||||
%% ================= Part 10: Implement Predict =================
|
||||
% After training the neural network, we would like to use it to predict
|
||||
% the labels. You will now implement the "predict" function to use the
|
||||
% neural network to predict the labels of the training set. This lets
|
||||
% you compute the training set accuracy.
|
||||
|
||||
pred = predict(Theta1, Theta2, X);
|
||||
|
||||
fprintf('\nTraining Set Accuracy: %f\n', mean(double(pred == y)) * 100);
|
||||
|
||||
|
||||
Reference in New Issue
Block a user