Moving course1 to course1 subdir.
This commit is contained in:
@@ -0,0 +1,33 @@
|
||||
function p = predict(Theta1, Theta2, X)
|
||||
%PREDICT Predict the label of an input given a trained neural network
|
||||
% p = PREDICT(Theta1, Theta2, X) outputs the predicted label of X given the
|
||||
% trained weights of a neural network (Theta1, Theta2)
|
||||
|
||||
% Useful values
|
||||
m = size(X, 1);
|
||||
num_labels = size(Theta2, 1);
|
||||
|
||||
% You need to return the following variables correctly
|
||||
p = zeros(size(X, 1), 1);
|
||||
|
||||
% ====================== YOUR CODE HERE ======================
|
||||
% Instructions: Complete the following code to make predictions using
|
||||
% your learned neural network. You should set p to a
|
||||
% vector containing labels between 1 to num_labels.
|
||||
%
|
||||
% Hint: The max function might come in useful. In particular, the max
|
||||
% function can also return the index of the max element, for more
|
||||
% information see 'help max'. If your examples are in rows, then, you
|
||||
% can use max(A, [], 2) to obtain the max for each row.
|
||||
%
|
||||
|
||||
X = [ones(m, 1) X];
|
||||
a2 = [ones(m,1) sigmoid(X*Theta1')];
|
||||
a3 = sigmoid(a2*Theta2');
|
||||
|
||||
[m, p] = max( a3, [], 2 );
|
||||
|
||||
% =========================================================================
|
||||
|
||||
|
||||
end
|
||||
Reference in New Issue
Block a user