Moving course1 to course1 subdir.
This commit is contained in:
@@ -0,0 +1,58 @@
|
||||
function [J, grad] = lrCostFunction(theta, X, y, lambda)
|
||||
%LRCOSTFUNCTION Compute cost and gradient for logistic regression with
|
||||
%regularization
|
||||
% J = LRCOSTFUNCTION(theta, X, y, lambda) computes the cost of using
|
||||
% theta as the parameter for regularized logistic regression and the
|
||||
% gradient of the cost w.r.t. to the parameters.
|
||||
|
||||
% Initialize some useful values
|
||||
m = length(y); % number of training examples
|
||||
|
||||
% You need to return the following variables correctly
|
||||
J = 0;
|
||||
grad = zeros(size(theta));
|
||||
|
||||
% ====================== YOUR CODE HERE ======================
|
||||
% Instructions: Compute the cost of a particular choice of theta.
|
||||
% You should set J to the cost.
|
||||
% Compute the partial derivatives and set grad to the partial
|
||||
% derivatives of the cost w.r.t. each parameter in theta
|
||||
%
|
||||
% Hint: The computation of the cost function and gradients can be
|
||||
% efficiently vectorized. For example, consider the computation
|
||||
%
|
||||
% sigmoid(X * theta)
|
||||
%
|
||||
% Each row of the resulting matrix will contain the value of the
|
||||
% prediction for that example. You can make use of this to vectorize
|
||||
% the cost function and gradient computations.
|
||||
%
|
||||
% Hint: When computing the gradient of the regularized cost function,
|
||||
% there're many possible vectorized solutions, but one solution
|
||||
% looks like:
|
||||
% grad = (unregularized gradient for logistic regression)
|
||||
% temp = theta;
|
||||
% temp(1) = 0; % because we don't add anything for j = 0
|
||||
% grad = grad + YOUR_CODE_HERE (using the temp variable)
|
||||
%
|
||||
|
||||
|
||||
h = sigmoid( X*theta );
|
||||
o = ones(size(y));
|
||||
reg = theta;
|
||||
reg(1) = 0;
|
||||
J = sum( y .* log(h) + (o-y) .* log(o-h) ) / (-m) + (lambda/(2*m))*sum(reg.^2);
|
||||
grad = (X'*(h - y)) / m + (lambda/m) * reg;
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
% =============================================================
|
||||
|
||||
grad = grad(:);
|
||||
|
||||
end
|
||||
Reference in New Issue
Block a user