Moving course1 to course1 subdir.
This commit is contained in:
@@ -0,0 +1,48 @@
|
||||
function plotDecisionBoundary(theta, X, y)
|
||||
%PLOTDECISIONBOUNDARY Plots the data points X and y into a new figure with
|
||||
%the decision boundary defined by theta
|
||||
% PLOTDECISIONBOUNDARY(theta, X,y) plots the data points with + for the
|
||||
% positive examples and o for the negative examples. X is assumed to be
|
||||
% a either
|
||||
% 1) Mx3 matrix, where the first column is an all-ones column for the
|
||||
% intercept.
|
||||
% 2) MxN, N>3 matrix, where the first column is all-ones
|
||||
|
||||
% Plot Data
|
||||
plotData(X(:,2:3), y);
|
||||
hold on
|
||||
|
||||
if size(X, 2) <= 3
|
||||
% Only need 2 points to define a line, so choose two endpoints
|
||||
plot_x = [min(X(:,2))-2, max(X(:,2))+2];
|
||||
|
||||
% Calculate the decision boundary line
|
||||
plot_y = (-1./theta(3)).*(theta(2).*plot_x + theta(1));
|
||||
|
||||
% Plot, and adjust axes for better viewing
|
||||
plot(plot_x, plot_y)
|
||||
|
||||
% Legend, specific for the exercise
|
||||
legend('Admitted', 'Not admitted', 'Decision Boundary')
|
||||
axis([30, 100, 30, 100])
|
||||
else
|
||||
% Here is the grid range
|
||||
u = linspace(-1, 1.5, 50);
|
||||
v = linspace(-1, 1.5, 50);
|
||||
|
||||
z = zeros(length(u), length(v));
|
||||
% Evaluate z = theta*x over the grid
|
||||
for i = 1:length(u)
|
||||
for j = 1:length(v)
|
||||
z(i,j) = mapFeature(u(i), v(j))*theta;
|
||||
end
|
||||
end
|
||||
z = z'; % important to transpose z before calling contour
|
||||
|
||||
% Plot z = 0
|
||||
% Notice you need to specify the range [0, 0]
|
||||
contour(u, v, z, [0, 0], 'LineWidth', 2)
|
||||
end
|
||||
hold off
|
||||
|
||||
end
|
||||
Reference in New Issue
Block a user