Moving course1 to course1 subdir.
This commit is contained in:
116
machine_learning/course1/mlclass-ex2-008/mlclass-ex2/ex2_reg.m
Normal file
116
machine_learning/course1/mlclass-ex2-008/mlclass-ex2/ex2_reg.m
Normal file
@@ -0,0 +1,116 @@
|
||||
%% Machine Learning Online Class - Exercise 2: Logistic Regression
|
||||
%
|
||||
% Instructions
|
||||
% ------------
|
||||
%
|
||||
% This file contains code that helps you get started on the second part
|
||||
% of the exercise which covers regularization with logistic regression.
|
||||
%
|
||||
% You will need to complete the following functions in this exericse:
|
||||
%
|
||||
% sigmoid.m
|
||||
% costFunction.m
|
||||
% predict.m
|
||||
% costFunctionReg.m
|
||||
%
|
||||
% For this exercise, you will not need to change any code in this file,
|
||||
% or any other files other than those mentioned above.
|
||||
%
|
||||
|
||||
%% Initialization
|
||||
clear ; close all; clc
|
||||
|
||||
%% Load Data
|
||||
% The first two columns contains the X values and the third column
|
||||
% contains the label (y).
|
||||
|
||||
data = load('ex2data2.txt');
|
||||
X = data(:, [1, 2]); y = data(:, 3);
|
||||
|
||||
plotData(X, y);
|
||||
|
||||
% Put some labels
|
||||
hold on;
|
||||
|
||||
% Labels and Legend
|
||||
xlabel('Microchip Test 1')
|
||||
ylabel('Microchip Test 2')
|
||||
|
||||
% Specified in plot order
|
||||
legend('y = 1', 'y = 0')
|
||||
hold off;
|
||||
|
||||
|
||||
%% =========== Part 1: Regularized Logistic Regression ============
|
||||
% In this part, you are given a dataset with data points that are not
|
||||
% linearly separable. However, you would still like to use logistic
|
||||
% regression to classify the data points.
|
||||
%
|
||||
% To do so, you introduce more features to use -- in particular, you add
|
||||
% polynomial features to our data matrix (similar to polynomial
|
||||
% regression).
|
||||
%
|
||||
|
||||
% Add Polynomial Features
|
||||
|
||||
% Note that mapFeature also adds a column of ones for us, so the intercept
|
||||
% term is handled
|
||||
X = mapFeature(X(:,1), X(:,2));
|
||||
|
||||
% Initialize fitting parameters
|
||||
initial_theta = zeros(size(X, 2), 1);
|
||||
|
||||
% Set regularization parameter lambda to 1
|
||||
lambda = 1;
|
||||
|
||||
% Compute and display initial cost and gradient for regularized logistic
|
||||
% regression
|
||||
[cost, grad] = costFunctionReg(initial_theta, X, y, lambda);
|
||||
|
||||
fprintf('Cost at initial theta (zeros): %f\n', cost);
|
||||
|
||||
fprintf('\nProgram paused. Press enter to continue.\n');
|
||||
pause;
|
||||
|
||||
%% ============= Part 2: Regularization and Accuracies =============
|
||||
% Optional Exercise:
|
||||
% In this part, you will get to try different values of lambda and
|
||||
% see how regularization affects the decision coundart
|
||||
%
|
||||
% Try the following values of lambda (0, 1, 10, 100).
|
||||
%
|
||||
% How does the decision boundary change when you vary lambda? How does
|
||||
% the training set accuracy vary?
|
||||
%
|
||||
|
||||
% Initialize fitting parameters
|
||||
initial_theta = zeros(size(X, 2), 1);
|
||||
|
||||
% Set regularization parameter lambda to 1 (you should vary this)
|
||||
lambda = 1;
|
||||
|
||||
% Set Options
|
||||
options = optimset('GradObj', 'on', 'MaxIter', 400);
|
||||
|
||||
% Optimize
|
||||
[theta, J, exit_flag] = ...
|
||||
fminunc(@(t)(costFunctionReg(t, X, y, lambda)), initial_theta, options);
|
||||
|
||||
% Plot Boundary
|
||||
plotDecisionBoundary(theta, X, y);
|
||||
hold on;
|
||||
title(sprintf('lambda = %g', lambda))
|
||||
|
||||
% Labels and Legend
|
||||
xlabel('Microchip Test 1')
|
||||
ylabel('Microchip Test 2')
|
||||
|
||||
legend('y = 1', 'y = 0', 'Decision boundary')
|
||||
hold off;
|
||||
|
||||
% Compute accuracy on our training set
|
||||
p = predict(theta, X);
|
||||
|
||||
fprintf('Train Accuracy: %f\n', mean(double(p == y)) * 100);
|
||||
|
||||
|
||||
Reference in New Issue
Block a user