Moving course1 to course1 subdir.
This commit is contained in:
135
machine_learning/course1/mlclass-ex2-008/mlclass-ex2/ex2.m
Normal file
135
machine_learning/course1/mlclass-ex2-008/mlclass-ex2/ex2.m
Normal file
@@ -0,0 +1,135 @@
|
||||
%% Machine Learning Online Class - Exercise 2: Logistic Regression
|
||||
%
|
||||
% Instructions
|
||||
% ------------
|
||||
%
|
||||
% This file contains code that helps you get started on the logistic
|
||||
% regression exercise. You will need to complete the following functions
|
||||
% in this exericse:
|
||||
%
|
||||
% sigmoid.m
|
||||
% costFunction.m
|
||||
% predict.m
|
||||
% costFunctionReg.m
|
||||
%
|
||||
% For this exercise, you will not need to change any code in this file,
|
||||
% or any other files other than those mentioned above.
|
||||
%
|
||||
|
||||
%% Initialization
|
||||
clear ; close all; clc
|
||||
|
||||
%% Load Data
|
||||
% The first two columns contains the exam scores and the third column
|
||||
% contains the label.
|
||||
|
||||
data = load('ex2data1.txt');
|
||||
X = data(:, [1, 2]); y = data(:, 3);
|
||||
|
||||
%% ==================== Part 1: Plotting ====================
|
||||
% We start the exercise by first plotting the data to understand the
|
||||
% the problem we are working with.
|
||||
|
||||
fprintf(['Plotting data with + indicating (y = 1) examples and o ' ...
|
||||
'indicating (y = 0) examples.\n']);
|
||||
|
||||
%%plotData(X, y);
|
||||
|
||||
% Put some labels
|
||||
%%hold on;
|
||||
% Labels and Legend
|
||||
%%xlabel('Exam 1 score')
|
||||
%%ylabel('Exam 2 score')
|
||||
|
||||
% Specified in plot order
|
||||
%%legend('Admitted', 'Not admitted')
|
||||
%%hold off;
|
||||
|
||||
fprintf('\nProgram paused. Press enter to continue.\n');
|
||||
%%pause;
|
||||
|
||||
|
||||
%% ============ Part 2: Compute Cost and Gradient ============
|
||||
% In this part of the exercise, you will implement the cost and gradient
|
||||
% for logistic regression. You neeed to complete the code in
|
||||
% costFunction.m
|
||||
|
||||
% Setup the data matrix appropriately, and add ones for the intercept term
|
||||
[m, n] = size(X);
|
||||
|
||||
% Add intercept term to x and X_test
|
||||
X = [ones(m, 1) X];
|
||||
|
||||
% Initialize fitting parameters
|
||||
initial_theta = zeros(n + 1, 1);
|
||||
|
||||
% Compute and display initial cost and gradient
|
||||
[cost, grad] = costFunction(initial_theta, X, y);
|
||||
|
||||
fprintf('Cost at initial theta (zeros): %f\n', cost);
|
||||
fprintf('Gradient at initial theta (zeros): \n');
|
||||
fprintf(' %f \n', grad);
|
||||
|
||||
fprintf('\nProgram paused. Press enter to continue.\n');
|
||||
pause;
|
||||
|
||||
|
||||
%% ============= Part 3: Optimizing using fminunc =============
|
||||
% In this exercise, you will use a built-in function (fminunc) to find the
|
||||
% optimal parameters theta.
|
||||
|
||||
% Set options for fminunc
|
||||
options = optimset('GradObj', 'on', 'MaxIter', 400);
|
||||
|
||||
% Run fminunc to obtain the optimal theta
|
||||
% This function will return theta and the cost
|
||||
[theta, cost] = ...
|
||||
fminunc(@(t)(costFunction(t, X, y)), initial_theta, options);
|
||||
|
||||
% Print theta to screen
|
||||
fprintf('Cost at theta found by fminunc: %f\n', cost);
|
||||
fprintf('theta: \n');
|
||||
fprintf(' %f \n', theta);
|
||||
|
||||
% Plot Boundary
|
||||
plotDecisionBoundary(theta, X, y);
|
||||
|
||||
% Put some labels
|
||||
hold on;
|
||||
% Labels and Legend
|
||||
xlabel('Exam 1 score')
|
||||
ylabel('Exam 2 score')
|
||||
|
||||
% Specified in plot order
|
||||
legend('Admitted', 'Not admitted')
|
||||
hold off;
|
||||
|
||||
fprintf('\nProgram paused. Press enter to continue.\n');
|
||||
pause;
|
||||
|
||||
%% ============== Part 4: Predict and Accuracies ==============
|
||||
% After learning the parameters, you'll like to use it to predict the outcomes
|
||||
% on unseen data. In this part, you will use the logistic regression model
|
||||
% to predict the probability that a student with score 45 on exam 1 and
|
||||
% score 85 on exam 2 will be admitted.
|
||||
%
|
||||
% Furthermore, you will compute the training and test set accuracies of
|
||||
% our model.
|
||||
%
|
||||
% Your task is to complete the code in predict.m
|
||||
|
||||
% Predict probability for a student with score 45 on exam 1
|
||||
% and score 85 on exam 2
|
||||
|
||||
prob = sigmoid([1 45 85] * theta);
|
||||
fprintf(['For a student with scores 45 and 85, we predict an admission ' ...
|
||||
'probability of %f\n\n'], prob);
|
||||
|
||||
% Compute accuracy on our training set
|
||||
p = predict(theta, X);
|
||||
|
||||
fprintf('Train Accuracy: %f\n', mean(double(p == y)) * 100);
|
||||
|
||||
fprintf('\nProgram paused. Press enter to continue.\n');
|
||||
pause;
|
||||
|
||||
Reference in New Issue
Block a user