Moving course1 to course1 subdir.

This commit is contained in:
2017-02-12 08:17:57 +00:00
parent f26649af32
commit 0f459c597c
143 changed files with 0 additions and 0 deletions

View File

@@ -0,0 +1,30 @@
function [J, grad] = costFunctionReg(theta, X, y, lambda)
%COSTFUNCTIONREG Compute cost and gradient for logistic regression with regularization
% J = COSTFUNCTIONREG(theta, X, y, lambda) computes the cost of using
% theta as the parameter for regularized logistic regression and the
% gradient of the cost w.r.t. to the parameters.
% Initialize some useful values
m = length(y); % number of training examples
% You need to return the following variables correctly
J = 0;
grad = zeros(size(theta));
% ====================== YOUR CODE HERE ======================
% Instructions: Compute the cost of a particular choice of theta.
% You should set J to the cost.
% Compute the partial derivatives and set grad to the partial
% derivatives of the cost w.r.t. each parameter in theta
h = sigmoid( X*theta );
o = ones(size(y));
reg = theta;
reg(1) = 0;
J = sum( y .* log(h) + (o-y) .* log(o-h) ) / (-m) + (lambda/(2*m))*sum(reg.^2);
grad = (X'*(h - y)) / m + (lambda/m) * reg;
% =============================================================
end