Moving course1 to course1 subdir.
This commit is contained in:
@@ -0,0 +1,30 @@
|
||||
function [J, grad] = costFunction(theta, X, y)
|
||||
%COSTFUNCTION Compute cost and gradient for logistic regression
|
||||
% J = COSTFUNCTION(theta, X, y) computes the cost of using theta as the
|
||||
% parameter for logistic regression and the gradient of the cost
|
||||
% w.r.t. to the parameters.
|
||||
|
||||
% Initialize some useful values
|
||||
m = length(y); % number of training examples
|
||||
|
||||
% You need to return the following variables correctly
|
||||
J = 0;
|
||||
grad = zeros(size(theta));
|
||||
|
||||
% ====================== YOUR CODE HERE ======================
|
||||
% Instructions: Compute the cost of a particular choice of theta.
|
||||
% You should set J to the cost.
|
||||
% Compute the partial derivatives and set grad to the partial
|
||||
% derivatives of the cost w.r.t. each parameter in theta
|
||||
%
|
||||
% Note: grad should have the same dimensions as theta
|
||||
%
|
||||
|
||||
h = sigmoid( X*theta );
|
||||
o = ones(size(y));
|
||||
J = sum( y .* log(h) + (o-y) .* log(o-h) ) / (-m);
|
||||
grad = (X'*(h - y)) / m;
|
||||
|
||||
% =============================================================
|
||||
|
||||
end
|
||||
Reference in New Issue
Block a user