Moving course1 to course1 subdir.
This commit is contained in:
@@ -0,0 +1,33 @@
|
||||
function [theta, J_history] = gradientDescent(X, y, theta, alpha, num_iters)
|
||||
%GRADIENTDESCENT Performs gradient descent to learn theta
|
||||
% theta = GRADIENTDESENT(X, y, theta, alpha, num_iters) updates theta by
|
||||
% taking num_iters gradient steps with learning rate alpha
|
||||
|
||||
% Initialize some useful values
|
||||
m = length(y); % number of training examples
|
||||
J_history = zeros(num_iters, 1);
|
||||
|
||||
for iter = 1:num_iters
|
||||
|
||||
% ====================== YOUR CODE HERE ======================
|
||||
% Instructions: Perform a single gradient step on the parameter vector
|
||||
% theta.
|
||||
%
|
||||
% Hint: While debugging, it can be useful to print out the values
|
||||
% of the cost function (computeCost) and gradient here.
|
||||
%
|
||||
|
||||
|
||||
|
||||
theta = theta - alpha * (X' * (X*theta-y) / m);
|
||||
|
||||
|
||||
|
||||
% ============================================================
|
||||
|
||||
% Save the cost J in every iteration
|
||||
J_history(iter) = computeCost(X, y, theta);
|
||||
|
||||
end
|
||||
|
||||
end
|
||||
Reference in New Issue
Block a user