Moving course1 to course1 subdir.
This commit is contained in:
BIN
machine_learning/course1/mlclass-ex1-008/ex1.pdf
Normal file
BIN
machine_learning/course1/mlclass-ex1-008/ex1.pdf
Normal file
Binary file not shown.
@@ -0,0 +1,22 @@
|
||||
function J = computeCost(X, y, theta)
|
||||
%COMPUTECOST Compute cost for linear regression
|
||||
% J = COMPUTECOST(X, y, theta) computes the cost of using theta as the
|
||||
% parameter for linear regression to fit the data points in X and y
|
||||
|
||||
% Initialize some useful values
|
||||
m = length(y); % number of training examples
|
||||
|
||||
% You need to return the following variables correctly
|
||||
J = 0;
|
||||
|
||||
% ====================== YOUR CODE HERE ======================
|
||||
% Instructions: Compute the cost of a particular choice of theta
|
||||
% You should set J to the cost.
|
||||
|
||||
%X = [ones(m,1) X];
|
||||
J = sum( (X*theta - y) .^ 2 ) / (2*m);
|
||||
|
||||
|
||||
% =========================================================================
|
||||
|
||||
end
|
||||
@@ -0,0 +1,22 @@
|
||||
function J = computeCostMulti(X, y, theta)
|
||||
%COMPUTECOSTMULTI Compute cost for linear regression with multiple variables
|
||||
% J = COMPUTECOSTMULTI(X, y, theta) computes the cost of using theta as the
|
||||
% parameter for linear regression to fit the data points in X and y
|
||||
|
||||
% Initialize some useful values
|
||||
m = length(y); % number of training examples
|
||||
|
||||
% You need to return the following variables correctly
|
||||
J = 0;
|
||||
|
||||
% ====================== YOUR CODE HERE ======================
|
||||
% Instructions: Compute the cost of a particular choice of theta
|
||||
% You should set J to the cost.
|
||||
|
||||
|
||||
J = sum( (X*theta - y) .^ 2 ) / (2*m);
|
||||
|
||||
|
||||
% =========================================================================
|
||||
|
||||
end
|
||||
122
machine_learning/course1/mlclass-ex1-008/mlclass-ex1/ex1.m
Normal file
122
machine_learning/course1/mlclass-ex1-008/mlclass-ex1/ex1.m
Normal file
@@ -0,0 +1,122 @@
|
||||
%% Machine Learning Online Class - Exercise 1: Linear Regression
|
||||
|
||||
% Instructions
|
||||
% ------------
|
||||
%
|
||||
% This file contains code that helps you get started on the
|
||||
% linear exercise. You will need to complete the following functions
|
||||
% in this exericse:
|
||||
%
|
||||
% warmUpExercise.m
|
||||
% plotData.m
|
||||
% gradientDescent.m
|
||||
% computeCost.m
|
||||
% gradientDescentMulti.m
|
||||
% computeCostMulti.m
|
||||
% featureNormalize.m
|
||||
% normalEqn.m
|
||||
%
|
||||
% For this exercise, you will not need to change any code in this file,
|
||||
% or any other files other than those mentioned above.
|
||||
%
|
||||
% x refers to the population size in 10,000s
|
||||
% y refers to the profit in $10,000s
|
||||
%
|
||||
|
||||
%% Initialization
|
||||
clear ; close all; clc
|
||||
|
||||
%% ==================== Part 1: Basic Function ====================
|
||||
% Complete warmUpExercise.m
|
||||
fprintf('Running warmUpExercise ... \n');
|
||||
fprintf('5x5 Identity Matrix: \n');
|
||||
warmUpExercise()
|
||||
|
||||
fprintf('Program paused. Press enter to continue.\n');
|
||||
pause;
|
||||
|
||||
|
||||
%% ======================= Part 2: Plotting =======================
|
||||
fprintf('Plotting Data ...\n')
|
||||
data = load('ex1data1.txt');
|
||||
X = data(:, 1); y = data(:, 2);
|
||||
m = length(y); % number of training examples
|
||||
|
||||
% Plot Data
|
||||
% Note: You have to complete the code in plotData.m
|
||||
plotData(X, y);
|
||||
|
||||
fprintf('Program paused. Press enter to continue.\n');
|
||||
pause;
|
||||
|
||||
%% =================== Part 3: Gradient descent ===================
|
||||
fprintf('Running Gradient Descent ...\n')
|
||||
|
||||
X = [ones(m, 1), data(:,1)]; % Add a column of ones to x
|
||||
theta = zeros(2, 1); % initialize fitting parameters
|
||||
|
||||
% Some gradient descent settings
|
||||
iterations = 1500;
|
||||
alpha = 0.01;
|
||||
|
||||
% compute and display initial cost
|
||||
computeCost(X, y, theta)
|
||||
|
||||
% run gradient descent
|
||||
theta = gradientDescent(X, y, theta, alpha, iterations);
|
||||
|
||||
% print theta to screen
|
||||
fprintf('Theta found by gradient descent: ');
|
||||
fprintf('%f %f \n', theta(1), theta(2));
|
||||
|
||||
% Plot the linear fit
|
||||
hold on; % keep previous plot visible
|
||||
plot(X(:,2), X*theta, '-')
|
||||
legend('Training data', 'Linear regression')
|
||||
hold off % don't overlay any more plots on this figure
|
||||
|
||||
% Predict values for population sizes of 35,000 and 70,000
|
||||
predict1 = [1, 3.5] *theta;
|
||||
fprintf('For population = 35,000, we predict a profit of %f\n',...
|
||||
predict1*10000);
|
||||
predict2 = [1, 7] * theta;
|
||||
fprintf('For population = 70,000, we predict a profit of %f\n',...
|
||||
predict2*10000);
|
||||
|
||||
fprintf('Program paused. Press enter to continue.\n');
|
||||
pause;
|
||||
|
||||
%% ============= Part 4: Visualizing J(theta_0, theta_1) =============
|
||||
fprintf('Visualizing J(theta_0, theta_1) ...\n')
|
||||
|
||||
% Grid over which we will calculate J
|
||||
theta0_vals = linspace(-10, 10, 100);
|
||||
theta1_vals = linspace(-1, 4, 100);
|
||||
|
||||
% initialize J_vals to a matrix of 0's
|
||||
J_vals = zeros(length(theta0_vals), length(theta1_vals));
|
||||
|
||||
% Fill out J_vals
|
||||
for i = 1:length(theta0_vals)
|
||||
for j = 1:length(theta1_vals)
|
||||
t = [theta0_vals(i); theta1_vals(j)];
|
||||
J_vals(i,j) = computeCost(X, y, t);
|
||||
end
|
||||
end
|
||||
|
||||
|
||||
% Because of the way meshgrids work in the surf command, we need to
|
||||
% transpose J_vals before calling surf, or else the axes will be flipped
|
||||
J_vals = J_vals';
|
||||
% Surface plot
|
||||
figure;
|
||||
surf(theta0_vals, theta1_vals, J_vals)
|
||||
xlabel('\theta_0'); ylabel('\theta_1');
|
||||
|
||||
% Contour plot
|
||||
figure;
|
||||
% Plot J_vals as 15 contours spaced logarithmically between 0.01 and 100
|
||||
contour(theta0_vals, theta1_vals, J_vals, logspace(-2, 3, 20))
|
||||
xlabel('\theta_0'); ylabel('\theta_1');
|
||||
hold on;
|
||||
plot(theta(1), theta(2), 'rx', 'MarkerSize', 10, 'LineWidth', 2);
|
||||
159
machine_learning/course1/mlclass-ex1-008/mlclass-ex1/ex1_multi.m
Normal file
159
machine_learning/course1/mlclass-ex1-008/mlclass-ex1/ex1_multi.m
Normal file
@@ -0,0 +1,159 @@
|
||||
%% Machine Learning Online Class
|
||||
% Exercise 1: Linear regression with multiple variables
|
||||
%
|
||||
% Instructions
|
||||
% ------------
|
||||
%
|
||||
% This file contains code that helps you get started on the
|
||||
% linear regression exercise.
|
||||
%
|
||||
% You will need to complete the following functions in this
|
||||
% exericse:
|
||||
%
|
||||
% warmUpExercise.m
|
||||
% plotData.m
|
||||
% gradientDescent.m
|
||||
% computeCost.m
|
||||
% gradientDescentMulti.m
|
||||
% computeCostMulti.m
|
||||
% featureNormalize.m
|
||||
% normalEqn.m
|
||||
%
|
||||
% For this part of the exercise, you will need to change some
|
||||
% parts of the code below for various experiments (e.g., changing
|
||||
% learning rates).
|
||||
%
|
||||
|
||||
%% Initialization
|
||||
|
||||
%% ================ Part 1: Feature Normalization ================
|
||||
|
||||
%% Clear and Close Figures
|
||||
clear ; close all; clc
|
||||
|
||||
fprintf('Loading data ...\n');
|
||||
|
||||
%% Load Data
|
||||
data = load('ex1data2.txt');
|
||||
X = data(:, 1:2);
|
||||
y = data(:, 3);
|
||||
m = length(y);
|
||||
|
||||
% Print out some data points
|
||||
fprintf('First 10 examples from the dataset: \n');
|
||||
fprintf(' x = [%.0f %.0f], y = %.0f \n', [X(1:10,:) y(1:10,:)]');
|
||||
|
||||
fprintf('Program paused. Press enter to continue.\n');
|
||||
pause;
|
||||
|
||||
% Scale features and set them to zero mean
|
||||
fprintf('Normalizing Features ...\n');
|
||||
|
||||
[X mu sigma] = featureNormalize(X);
|
||||
|
||||
% Add intercept term to X
|
||||
X = [ones(m, 1) X];
|
||||
|
||||
|
||||
%% ================ Part 2: Gradient Descent ================
|
||||
|
||||
% ====================== YOUR CODE HERE ======================
|
||||
% Instructions: We have provided you with the following starter
|
||||
% code that runs gradient descent with a particular
|
||||
% learning rate (alpha).
|
||||
%
|
||||
% Your task is to first make sure that your functions -
|
||||
% computeCost and gradientDescent already work with
|
||||
% this starter code and support multiple variables.
|
||||
%
|
||||
% After that, try running gradient descent with
|
||||
% different values of alpha and see which one gives
|
||||
% you the best result.
|
||||
%
|
||||
% Finally, you should complete the code at the end
|
||||
% to predict the price of a 1650 sq-ft, 3 br house.
|
||||
%
|
||||
% Hint: By using the 'hold on' command, you can plot multiple
|
||||
% graphs on the same figure.
|
||||
%
|
||||
% Hint: At prediction, make sure you do the same feature normalization.
|
||||
%
|
||||
|
||||
fprintf('Running gradient descent ...\n');
|
||||
|
||||
% Choose some alpha value
|
||||
alpha = 0.01;
|
||||
num_iters = 400;
|
||||
|
||||
% Init Theta and Run Gradient Descent
|
||||
theta = zeros(3, 1);
|
||||
[theta, J_history] = gradientDescentMulti(X, y, theta, alpha, num_iters);
|
||||
|
||||
% Plot the convergence graph
|
||||
figure;
|
||||
plot(1:numel(J_history), J_history, '-b', 'LineWidth', 2);
|
||||
xlabel('Number of iterations');
|
||||
ylabel('Cost J');
|
||||
|
||||
% Display gradient descent's result
|
||||
fprintf('Theta computed from gradient descent: \n');
|
||||
fprintf(' %f \n', theta);
|
||||
fprintf('\n');
|
||||
|
||||
% Estimate the price of a 1650 sq-ft, 3 br house
|
||||
% ====================== YOUR CODE HERE ======================
|
||||
% Recall that the first column of X is all-ones. Thus, it does
|
||||
% not need to be normalized.
|
||||
price = 0; % You should change this
|
||||
|
||||
|
||||
% ============================================================
|
||||
|
||||
fprintf(['Predicted price of a 1650 sq-ft, 3 br house ' ...
|
||||
'(using gradient descent):\n $%f\n'], price);
|
||||
|
||||
fprintf('Program paused. Press enter to continue.\n');
|
||||
pause;
|
||||
|
||||
%% ================ Part 3: Normal Equations ================
|
||||
|
||||
fprintf('Solving with normal equations...\n');
|
||||
|
||||
% ====================== YOUR CODE HERE ======================
|
||||
% Instructions: The following code computes the closed form
|
||||
% solution for linear regression using the normal
|
||||
% equations. You should complete the code in
|
||||
% normalEqn.m
|
||||
%
|
||||
% After doing so, you should complete this code
|
||||
% to predict the price of a 1650 sq-ft, 3 br house.
|
||||
%
|
||||
|
||||
%% Load Data
|
||||
data = csvread('ex1data2.txt');
|
||||
X = data(:, 1:2);
|
||||
y = data(:, 3);
|
||||
m = length(y);
|
||||
|
||||
% Add intercept term to X
|
||||
X = [ones(m, 1) X];
|
||||
|
||||
% Calculate the parameters from the normal equation
|
||||
theta = normalEqn(X, y);
|
||||
|
||||
% Display normal equation's result
|
||||
fprintf('Theta computed from the normal equations: \n');
|
||||
fprintf(' %f \n', theta);
|
||||
fprintf('\n');
|
||||
|
||||
|
||||
% Estimate the price of a 1650 sq-ft, 3 br house
|
||||
% ====================== YOUR CODE HERE ======================
|
||||
price = 0; % You should change this
|
||||
|
||||
|
||||
% ============================================================
|
||||
|
||||
fprintf(['Predicted price of a 1650 sq-ft, 3 br house ' ...
|
||||
'(using normal equations):\n $%f\n'], price);
|
||||
|
||||
@@ -0,0 +1,97 @@
|
||||
6.1101,17.592
|
||||
5.5277,9.1302
|
||||
8.5186,13.662
|
||||
7.0032,11.854
|
||||
5.8598,6.8233
|
||||
8.3829,11.886
|
||||
7.4764,4.3483
|
||||
8.5781,12
|
||||
6.4862,6.5987
|
||||
5.0546,3.8166
|
||||
5.7107,3.2522
|
||||
14.164,15.505
|
||||
5.734,3.1551
|
||||
8.4084,7.2258
|
||||
5.6407,0.71618
|
||||
5.3794,3.5129
|
||||
6.3654,5.3048
|
||||
5.1301,0.56077
|
||||
6.4296,3.6518
|
||||
7.0708,5.3893
|
||||
6.1891,3.1386
|
||||
20.27,21.767
|
||||
5.4901,4.263
|
||||
6.3261,5.1875
|
||||
5.5649,3.0825
|
||||
18.945,22.638
|
||||
12.828,13.501
|
||||
10.957,7.0467
|
||||
13.176,14.692
|
||||
22.203,24.147
|
||||
5.2524,-1.22
|
||||
6.5894,5.9966
|
||||
9.2482,12.134
|
||||
5.8918,1.8495
|
||||
8.2111,6.5426
|
||||
7.9334,4.5623
|
||||
8.0959,4.1164
|
||||
5.6063,3.3928
|
||||
12.836,10.117
|
||||
6.3534,5.4974
|
||||
5.4069,0.55657
|
||||
6.8825,3.9115
|
||||
11.708,5.3854
|
||||
5.7737,2.4406
|
||||
7.8247,6.7318
|
||||
7.0931,1.0463
|
||||
5.0702,5.1337
|
||||
5.8014,1.844
|
||||
11.7,8.0043
|
||||
5.5416,1.0179
|
||||
7.5402,6.7504
|
||||
5.3077,1.8396
|
||||
7.4239,4.2885
|
||||
7.6031,4.9981
|
||||
6.3328,1.4233
|
||||
6.3589,-1.4211
|
||||
6.2742,2.4756
|
||||
5.6397,4.6042
|
||||
9.3102,3.9624
|
||||
9.4536,5.4141
|
||||
8.8254,5.1694
|
||||
5.1793,-0.74279
|
||||
21.279,17.929
|
||||
14.908,12.054
|
||||
18.959,17.054
|
||||
7.2182,4.8852
|
||||
8.2951,5.7442
|
||||
10.236,7.7754
|
||||
5.4994,1.0173
|
||||
20.341,20.992
|
||||
10.136,6.6799
|
||||
7.3345,4.0259
|
||||
6.0062,1.2784
|
||||
7.2259,3.3411
|
||||
5.0269,-2.6807
|
||||
6.5479,0.29678
|
||||
7.5386,3.8845
|
||||
5.0365,5.7014
|
||||
10.274,6.7526
|
||||
5.1077,2.0576
|
||||
5.7292,0.47953
|
||||
5.1884,0.20421
|
||||
6.3557,0.67861
|
||||
9.7687,7.5435
|
||||
6.5159,5.3436
|
||||
8.5172,4.2415
|
||||
9.1802,6.7981
|
||||
6.002,0.92695
|
||||
5.5204,0.152
|
||||
5.0594,2.8214
|
||||
5.7077,1.8451
|
||||
7.6366,4.2959
|
||||
5.8707,7.2029
|
||||
5.3054,1.9869
|
||||
8.2934,0.14454
|
||||
13.394,9.0551
|
||||
5.4369,0.61705
|
||||
@@ -0,0 +1,47 @@
|
||||
2104,3,399900
|
||||
1600,3,329900
|
||||
2400,3,369000
|
||||
1416,2,232000
|
||||
3000,4,539900
|
||||
1985,4,299900
|
||||
1534,3,314900
|
||||
1427,3,198999
|
||||
1380,3,212000
|
||||
1494,3,242500
|
||||
1940,4,239999
|
||||
2000,3,347000
|
||||
1890,3,329999
|
||||
4478,5,699900
|
||||
1268,3,259900
|
||||
2300,4,449900
|
||||
1320,2,299900
|
||||
1236,3,199900
|
||||
2609,4,499998
|
||||
3031,4,599000
|
||||
1767,3,252900
|
||||
1888,2,255000
|
||||
1604,3,242900
|
||||
1962,4,259900
|
||||
3890,3,573900
|
||||
1100,3,249900
|
||||
1458,3,464500
|
||||
2526,3,469000
|
||||
2200,3,475000
|
||||
2637,3,299900
|
||||
1839,2,349900
|
||||
1000,1,169900
|
||||
2040,4,314900
|
||||
3137,3,579900
|
||||
1811,4,285900
|
||||
1437,3,249900
|
||||
1239,3,229900
|
||||
2132,4,345000
|
||||
4215,4,549000
|
||||
2162,4,287000
|
||||
1664,2,368500
|
||||
2238,3,329900
|
||||
2567,4,314000
|
||||
1200,3,299000
|
||||
852,2,179900
|
||||
1852,4,299900
|
||||
1203,3,239500
|
||||
@@ -0,0 +1,39 @@
|
||||
function [X_norm, mu, sigma] = featureNormalize(X)
|
||||
%FEATURENORMALIZE Normalizes the features in X
|
||||
% FEATURENORMALIZE(X) returns a normalized version of X where
|
||||
% the mean value of each feature is 0 and the standard deviation
|
||||
% is 1. This is often a good preprocessing step to do when
|
||||
% working with learning algorithms.
|
||||
|
||||
% You need to set these values correctly
|
||||
X_norm = X;
|
||||
mu = zeros(1, size(X, 2));
|
||||
sigma = zeros(1, size(X, 2));
|
||||
|
||||
% ====================== YOUR CODE HERE ======================
|
||||
% Instructions: First, for each feature dimension, compute the mean
|
||||
% of the feature and subtract it from the dataset,
|
||||
% storing the mean value in mu. Next, compute the
|
||||
% standard deviation of each feature and divide
|
||||
% each feature by it's standard deviation, storing
|
||||
% the standard deviation in sigma.
|
||||
%
|
||||
% Note that X is a matrix where each column is a
|
||||
% feature and each row is an example. You need
|
||||
% to perform the normalization separately for
|
||||
% each feature.
|
||||
%
|
||||
% Hint: You might find the 'mean' and 'std' functions useful.
|
||||
%
|
||||
|
||||
mu = mean(X);
|
||||
sigma = std(X);
|
||||
|
||||
X_norm = (X - repmat( mu, size(X,1), 1 )) ./ repmat( sigma, size(X,1), 1 );
|
||||
|
||||
|
||||
|
||||
|
||||
% ============================================================
|
||||
|
||||
end
|
||||
@@ -0,0 +1,33 @@
|
||||
function [theta, J_history] = gradientDescent(X, y, theta, alpha, num_iters)
|
||||
%GRADIENTDESCENT Performs gradient descent to learn theta
|
||||
% theta = GRADIENTDESENT(X, y, theta, alpha, num_iters) updates theta by
|
||||
% taking num_iters gradient steps with learning rate alpha
|
||||
|
||||
% Initialize some useful values
|
||||
m = length(y); % number of training examples
|
||||
J_history = zeros(num_iters, 1);
|
||||
|
||||
for iter = 1:num_iters
|
||||
|
||||
% ====================== YOUR CODE HERE ======================
|
||||
% Instructions: Perform a single gradient step on the parameter vector
|
||||
% theta.
|
||||
%
|
||||
% Hint: While debugging, it can be useful to print out the values
|
||||
% of the cost function (computeCost) and gradient here.
|
||||
%
|
||||
|
||||
|
||||
|
||||
theta = theta - alpha * (X' * (X*theta-y) / m);
|
||||
|
||||
|
||||
|
||||
% ============================================================
|
||||
|
||||
% Save the cost J in every iteration
|
||||
J_history(iter) = computeCost(X, y, theta);
|
||||
|
||||
end
|
||||
|
||||
end
|
||||
@@ -0,0 +1,37 @@
|
||||
function [theta, J_history] = gradientDescentMulti(X, y, theta, alpha, num_iters)
|
||||
%GRADIENTDESCENTMULTI Performs gradient descent to learn theta
|
||||
% theta = GRADIENTDESCENTMULTI(x, y, theta, alpha, num_iters) updates theta by
|
||||
% taking num_iters gradient steps with learning rate alpha
|
||||
|
||||
% Initialize some useful values
|
||||
m = length(y); % number of training examples
|
||||
J_history = zeros(num_iters, 1);
|
||||
|
||||
for iter = 1:num_iters
|
||||
|
||||
% ====================== YOUR CODE HERE ======================
|
||||
% Instructions: Perform a single gradient step on the parameter vector
|
||||
% theta.
|
||||
%
|
||||
% Hint: While debugging, it can be useful to print out the values
|
||||
% of the cost function (computeCostMulti) and gradient here.
|
||||
%
|
||||
|
||||
|
||||
|
||||
theta = theta - alpha * (X' * (X*theta-y) / m);
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
% ============================================================
|
||||
|
||||
% Save the cost J in every iteration
|
||||
J_history(iter) = computeCostMulti(X, y, theta);
|
||||
|
||||
end
|
||||
|
||||
end
|
||||
@@ -0,0 +1,23 @@
|
||||
function [theta] = normalEqn(X, y)
|
||||
%NORMALEQN Computes the closed-form solution to linear regression
|
||||
% NORMALEQN(X,y) computes the closed-form solution to linear
|
||||
% regression using the normal equations.
|
||||
|
||||
theta = zeros(size(X, 2), 1);
|
||||
|
||||
% ====================== YOUR CODE HERE ======================
|
||||
% Instructions: Complete the code to compute the closed form solution
|
||||
% to linear regression and put the result in theta.
|
||||
%
|
||||
|
||||
% ---------------------- Sample Solution ----------------------
|
||||
|
||||
|
||||
theta = pinv(X'*X)*X'*y;
|
||||
|
||||
% -------------------------------------------------------------
|
||||
|
||||
|
||||
% ============================================================
|
||||
|
||||
end
|
||||
@@ -0,0 +1,26 @@
|
||||
function plotData(x, y)
|
||||
%PLOTDATA Plots the data points x and y into a new figure
|
||||
% PLOTDATA(x,y) plots the data points and gives the figure axes labels of
|
||||
% population and profit.
|
||||
|
||||
% ====================== YOUR CODE HERE ======================
|
||||
% Instructions: Plot the training data into a figure using the
|
||||
% "figure" and "plot" commands. Set the axes labels using
|
||||
% the "xlabel" and "ylabel" commands. Assume the
|
||||
% population and revenue data have been passed in
|
||||
% as the x and y arguments of this function.
|
||||
%
|
||||
% Hint: You can use the 'rx' option with plot to have the markers
|
||||
% appear as red crosses. Furthermore, you can make the
|
||||
% markers larger by using plot(..., 'rx', 'MarkerSize', 10);
|
||||
|
||||
figure; % open a new figure window
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
% ============================================================
|
||||
|
||||
end
|
||||
577
machine_learning/course1/mlclass-ex1-008/mlclass-ex1/submit.m
Normal file
577
machine_learning/course1/mlclass-ex1-008/mlclass-ex1/submit.m
Normal file
@@ -0,0 +1,577 @@
|
||||
function submit(partId, webSubmit)
|
||||
%SUBMIT Submit your code and output to the ml-class servers
|
||||
% SUBMIT() will connect to the ml-class server and submit your solution
|
||||
|
||||
fprintf('==\n== [ml-class] Submitting Solutions | Programming Exercise %s\n==\n', ...
|
||||
homework_id());
|
||||
if ~exist('partId', 'var') || isempty(partId)
|
||||
partId = promptPart();
|
||||
end
|
||||
|
||||
if ~exist('webSubmit', 'var') || isempty(webSubmit)
|
||||
webSubmit = 0; % submit directly by default
|
||||
end
|
||||
|
||||
% Check valid partId
|
||||
partNames = validParts();
|
||||
if ~isValidPartId(partId)
|
||||
fprintf('!! Invalid homework part selected.\n');
|
||||
fprintf('!! Expected an integer from 1 to %d.\n', numel(partNames) + 1);
|
||||
fprintf('!! Submission Cancelled\n');
|
||||
return
|
||||
end
|
||||
|
||||
if ~exist('ml_login_data.mat','file')
|
||||
[login password] = loginPrompt();
|
||||
save('ml_login_data.mat','login','password');
|
||||
else
|
||||
load('ml_login_data.mat');
|
||||
[login password] = quickLogin(login, password);
|
||||
save('ml_login_data.mat','login','password');
|
||||
end
|
||||
|
||||
if isempty(login)
|
||||
fprintf('!! Submission Cancelled\n');
|
||||
return
|
||||
end
|
||||
|
||||
fprintf('\n== Connecting to ml-class ... ');
|
||||
if exist('OCTAVE_VERSION')
|
||||
fflush(stdout);
|
||||
end
|
||||
|
||||
% Setup submit list
|
||||
if partId == numel(partNames) + 1
|
||||
submitParts = 1:numel(partNames);
|
||||
else
|
||||
submitParts = [partId];
|
||||
end
|
||||
|
||||
for s = 1:numel(submitParts)
|
||||
thisPartId = submitParts(s);
|
||||
if (~webSubmit) % submit directly to server
|
||||
[login, ch, signature, auxstring] = getChallenge(login, thisPartId);
|
||||
if isempty(login) || isempty(ch) || isempty(signature)
|
||||
% Some error occured, error string in first return element.
|
||||
fprintf('\n!! Error: %s\n\n', login);
|
||||
return
|
||||
end
|
||||
|
||||
% Attempt Submission with Challenge
|
||||
ch_resp = challengeResponse(login, password, ch);
|
||||
|
||||
[result, str] = submitSolution(login, ch_resp, thisPartId, ...
|
||||
output(thisPartId, auxstring), source(thisPartId), signature);
|
||||
|
||||
partName = partNames{thisPartId};
|
||||
|
||||
fprintf('\n== [ml-class] Submitted Assignment %s - Part %d - %s\n', ...
|
||||
homework_id(), thisPartId, partName);
|
||||
fprintf('== %s\n', strtrim(str));
|
||||
|
||||
if exist('OCTAVE_VERSION')
|
||||
fflush(stdout);
|
||||
end
|
||||
else
|
||||
[result] = submitSolutionWeb(login, thisPartId, output(thisPartId), ...
|
||||
source(thisPartId));
|
||||
result = base64encode(result);
|
||||
|
||||
fprintf('\nSave as submission file [submit_ex%s_part%d.txt (enter to accept default)]:', ...
|
||||
homework_id(), thisPartId);
|
||||
saveAsFile = input('', 's');
|
||||
if (isempty(saveAsFile))
|
||||
saveAsFile = sprintf('submit_ex%s_part%d.txt', homework_id(), thisPartId);
|
||||
end
|
||||
|
||||
fid = fopen(saveAsFile, 'w');
|
||||
if (fid)
|
||||
fwrite(fid, result);
|
||||
fclose(fid);
|
||||
fprintf('\nSaved your solutions to %s.\n\n', saveAsFile);
|
||||
fprintf(['You can now submit your solutions through the web \n' ...
|
||||
'form in the programming exercises. Select the corresponding \n' ...
|
||||
'programming exercise to access the form.\n']);
|
||||
|
||||
else
|
||||
fprintf('Unable to save to %s\n\n', saveAsFile);
|
||||
fprintf(['You can create a submission file by saving the \n' ...
|
||||
'following text in a file: (press enter to continue)\n\n']);
|
||||
pause;
|
||||
fprintf(result);
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
% ================== CONFIGURABLES FOR EACH HOMEWORK ==================
|
||||
|
||||
function id = homework_id()
|
||||
id = '1';
|
||||
end
|
||||
|
||||
function [partNames] = validParts()
|
||||
partNames = { 'Warm up exercise ', ...
|
||||
'Computing Cost (for one variable)', ...
|
||||
'Gradient Descent (for one variable)', ...
|
||||
'Feature Normalization', ...
|
||||
'Computing Cost (for multiple variables)', ...
|
||||
'Gradient Descent (for multiple variables)', ...
|
||||
'Normal Equations'};
|
||||
end
|
||||
|
||||
function srcs = sources()
|
||||
% Separated by part
|
||||
srcs = { { 'warmUpExercise.m' }, ...
|
||||
{ 'computeCost.m' }, ...
|
||||
{ 'gradientDescent.m' }, ...
|
||||
{ 'featureNormalize.m' }, ...
|
||||
{ 'computeCostMulti.m' }, ...
|
||||
{ 'gradientDescentMulti.m' }, ...
|
||||
{ 'normalEqn.m' }, ...
|
||||
};
|
||||
end
|
||||
|
||||
function out = output(partId, auxstring)
|
||||
% Random Test Cases
|
||||
X1 = [ones(20,1) (exp(1) + exp(2) * (0.1:0.1:2))'];
|
||||
Y1 = X1(:,2) + sin(X1(:,1)) + cos(X1(:,2));
|
||||
X2 = [X1 X1(:,2).^0.5 X1(:,2).^0.25];
|
||||
Y2 = Y1.^0.5 + Y1;
|
||||
if partId == 1
|
||||
out = sprintf('%0.5f ', warmUpExercise());
|
||||
elseif partId == 2
|
||||
out = sprintf('%0.5f ', computeCost(X1, Y1, [0.5 -0.5]'));
|
||||
elseif partId == 3
|
||||
out = sprintf('%0.5f ', gradientDescent(X1, Y1, [0.5 -0.5]', 0.01, 10));
|
||||
elseif partId == 4
|
||||
out = sprintf('%0.5f ', featureNormalize(X2(:,2:4)));
|
||||
elseif partId == 5
|
||||
out = sprintf('%0.5f ', computeCostMulti(X2, Y2, [0.1 0.2 0.3 0.4]'));
|
||||
elseif partId == 6
|
||||
out = sprintf('%0.5f ', gradientDescentMulti(X2, Y2, [-0.1 -0.2 -0.3 -0.4]', 0.01, 10));
|
||||
elseif partId == 7
|
||||
out = sprintf('%0.5f ', normalEqn(X2, Y2));
|
||||
end
|
||||
end
|
||||
|
||||
% ====================== SERVER CONFIGURATION ===========================
|
||||
|
||||
% ***************** REMOVE -staging WHEN YOU DEPLOY *********************
|
||||
function url = site_url()
|
||||
url = 'http://class.coursera.org/ml-008';
|
||||
end
|
||||
|
||||
function url = challenge_url()
|
||||
url = [site_url() '/assignment/challenge'];
|
||||
end
|
||||
|
||||
function url = submit_url()
|
||||
url = [site_url() '/assignment/submit'];
|
||||
end
|
||||
|
||||
% ========================= CHALLENGE HELPERS =========================
|
||||
|
||||
function src = source(partId)
|
||||
src = '';
|
||||
src_files = sources();
|
||||
if partId <= numel(src_files)
|
||||
flist = src_files{partId};
|
||||
for i = 1:numel(flist)
|
||||
fid = fopen(flist{i});
|
||||
if (fid == -1)
|
||||
error('Error opening %s (is it missing?)', flist{i});
|
||||
end
|
||||
line = fgets(fid);
|
||||
while ischar(line)
|
||||
src = [src line];
|
||||
line = fgets(fid);
|
||||
end
|
||||
fclose(fid);
|
||||
src = [src '||||||||'];
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
function ret = isValidPartId(partId)
|
||||
partNames = validParts();
|
||||
ret = (~isempty(partId)) && (partId >= 1) && (partId <= numel(partNames) + 1);
|
||||
end
|
||||
|
||||
function partId = promptPart()
|
||||
fprintf('== Select which part(s) to submit:\n');
|
||||
partNames = validParts();
|
||||
srcFiles = sources();
|
||||
for i = 1:numel(partNames)
|
||||
fprintf('== %d) %s [', i, partNames{i});
|
||||
fprintf(' %s ', srcFiles{i}{:});
|
||||
fprintf(']\n');
|
||||
end
|
||||
fprintf('== %d) All of the above \n==\nEnter your choice [1-%d]: ', ...
|
||||
numel(partNames) + 1, numel(partNames) + 1);
|
||||
selPart = input('', 's');
|
||||
partId = str2num(selPart);
|
||||
if ~isValidPartId(partId)
|
||||
partId = -1;
|
||||
end
|
||||
end
|
||||
|
||||
function [email,ch,signature,auxstring] = getChallenge(email, part)
|
||||
str = urlread(challenge_url(), 'post', {'email_address', email, 'assignment_part_sid', [homework_id() '-' num2str(part)], 'response_encoding', 'delim'});
|
||||
|
||||
str = strtrim(str);
|
||||
r = struct;
|
||||
while(numel(str) > 0)
|
||||
[f, str] = strtok (str, '|');
|
||||
[v, str] = strtok (str, '|');
|
||||
r = setfield(r, f, v);
|
||||
end
|
||||
|
||||
email = getfield(r, 'email_address');
|
||||
ch = getfield(r, 'challenge_key');
|
||||
signature = getfield(r, 'state');
|
||||
auxstring = getfield(r, 'challenge_aux_data');
|
||||
end
|
||||
|
||||
function [result, str] = submitSolutionWeb(email, part, output, source)
|
||||
|
||||
result = ['{"assignment_part_sid":"' base64encode([homework_id() '-' num2str(part)], '') '",' ...
|
||||
'"email_address":"' base64encode(email, '') '",' ...
|
||||
'"submission":"' base64encode(output, '') '",' ...
|
||||
'"submission_aux":"' base64encode(source, '') '"' ...
|
||||
'}'];
|
||||
str = 'Web-submission';
|
||||
end
|
||||
|
||||
function [result, str] = submitSolution(email, ch_resp, part, output, ...
|
||||
source, signature)
|
||||
|
||||
params = {'assignment_part_sid', [homework_id() '-' num2str(part)], ...
|
||||
'email_address', email, ...
|
||||
'submission', base64encode(output, ''), ...
|
||||
'submission_aux', base64encode(source, ''), ...
|
||||
'challenge_response', ch_resp, ...
|
||||
'state', signature};
|
||||
|
||||
str = urlread(submit_url(), 'post', params);
|
||||
|
||||
% Parse str to read for success / failure
|
||||
result = 0;
|
||||
|
||||
end
|
||||
|
||||
% =========================== LOGIN HELPERS ===========================
|
||||
|
||||
function [login password] = loginPrompt()
|
||||
% Prompt for password
|
||||
[login password] = basicPrompt();
|
||||
|
||||
if isempty(login) || isempty(password)
|
||||
login = []; password = [];
|
||||
end
|
||||
end
|
||||
|
||||
|
||||
function [login password] = basicPrompt()
|
||||
login = input('Login (Email address): ', 's');
|
||||
password = input('Password: ', 's');
|
||||
end
|
||||
|
||||
function [login password] = quickLogin(login,password)
|
||||
disp(['You are currently logged in as ' login '.']);
|
||||
cont_token = input('Is this you? (y/n - type n to reenter password)','s');
|
||||
if(isempty(cont_token) || cont_token(1)=='Y'||cont_token(1)=='y')
|
||||
return;
|
||||
else
|
||||
[login password] = loginPrompt();
|
||||
end
|
||||
end
|
||||
|
||||
function [str] = challengeResponse(email, passwd, challenge)
|
||||
str = sha1([challenge passwd]);
|
||||
end
|
||||
|
||||
% =============================== SHA-1 ================================
|
||||
|
||||
function hash = sha1(str)
|
||||
|
||||
% Initialize variables
|
||||
h0 = uint32(1732584193);
|
||||
h1 = uint32(4023233417);
|
||||
h2 = uint32(2562383102);
|
||||
h3 = uint32(271733878);
|
||||
h4 = uint32(3285377520);
|
||||
|
||||
% Convert to word array
|
||||
strlen = numel(str);
|
||||
|
||||
% Break string into chars and append the bit 1 to the message
|
||||
mC = [double(str) 128];
|
||||
mC = [mC zeros(1, 4-mod(numel(mC), 4), 'uint8')];
|
||||
|
||||
numB = strlen * 8;
|
||||
if exist('idivide')
|
||||
numC = idivide(uint32(numB + 65), 512, 'ceil');
|
||||
else
|
||||
numC = ceil(double(numB + 65)/512);
|
||||
end
|
||||
numW = numC * 16;
|
||||
mW = zeros(numW, 1, 'uint32');
|
||||
|
||||
idx = 1;
|
||||
for i = 1:4:strlen + 1
|
||||
mW(idx) = bitor(bitor(bitor( ...
|
||||
bitshift(uint32(mC(i)), 24), ...
|
||||
bitshift(uint32(mC(i+1)), 16)), ...
|
||||
bitshift(uint32(mC(i+2)), 8)), ...
|
||||
uint32(mC(i+3)));
|
||||
idx = idx + 1;
|
||||
end
|
||||
|
||||
% Append length of message
|
||||
mW(numW - 1) = uint32(bitshift(uint64(numB), -32));
|
||||
mW(numW) = uint32(bitshift(bitshift(uint64(numB), 32), -32));
|
||||
|
||||
% Process the message in successive 512-bit chs
|
||||
for cId = 1 : double(numC)
|
||||
cSt = (cId - 1) * 16 + 1;
|
||||
cEnd = cId * 16;
|
||||
ch = mW(cSt : cEnd);
|
||||
|
||||
% Extend the sixteen 32-bit words into eighty 32-bit words
|
||||
for j = 17 : 80
|
||||
ch(j) = ch(j - 3);
|
||||
ch(j) = bitxor(ch(j), ch(j - 8));
|
||||
ch(j) = bitxor(ch(j), ch(j - 14));
|
||||
ch(j) = bitxor(ch(j), ch(j - 16));
|
||||
ch(j) = bitrotate(ch(j), 1);
|
||||
end
|
||||
|
||||
% Initialize hash value for this ch
|
||||
a = h0;
|
||||
b = h1;
|
||||
c = h2;
|
||||
d = h3;
|
||||
e = h4;
|
||||
|
||||
% Main loop
|
||||
for i = 1 : 80
|
||||
if(i >= 1 && i <= 20)
|
||||
f = bitor(bitand(b, c), bitand(bitcmp(b), d));
|
||||
k = uint32(1518500249);
|
||||
elseif(i >= 21 && i <= 40)
|
||||
f = bitxor(bitxor(b, c), d);
|
||||
k = uint32(1859775393);
|
||||
elseif(i >= 41 && i <= 60)
|
||||
f = bitor(bitor(bitand(b, c), bitand(b, d)), bitand(c, d));
|
||||
k = uint32(2400959708);
|
||||
elseif(i >= 61 && i <= 80)
|
||||
f = bitxor(bitxor(b, c), d);
|
||||
k = uint32(3395469782);
|
||||
end
|
||||
|
||||
t = bitrotate(a, 5);
|
||||
t = bitadd(t, f);
|
||||
t = bitadd(t, e);
|
||||
t = bitadd(t, k);
|
||||
t = bitadd(t, ch(i));
|
||||
e = d;
|
||||
d = c;
|
||||
c = bitrotate(b, 30);
|
||||
b = a;
|
||||
a = t;
|
||||
|
||||
end
|
||||
h0 = bitadd(h0, a);
|
||||
h1 = bitadd(h1, b);
|
||||
h2 = bitadd(h2, c);
|
||||
h3 = bitadd(h3, d);
|
||||
h4 = bitadd(h4, e);
|
||||
|
||||
end
|
||||
|
||||
hash = reshape(dec2hex(double([h0 h1 h2 h3 h4]), 8)', [1 40]);
|
||||
|
||||
hash = lower(hash);
|
||||
|
||||
end
|
||||
|
||||
function ret = bitadd(iA, iB)
|
||||
ret = double(iA) + double(iB);
|
||||
ret = bitset(ret, 33, 0);
|
||||
ret = uint32(ret);
|
||||
end
|
||||
|
||||
function ret = bitrotate(iA, places)
|
||||
t = bitshift(iA, places - 32);
|
||||
ret = bitshift(iA, places);
|
||||
ret = bitor(ret, t);
|
||||
end
|
||||
|
||||
% =========================== Base64 Encoder ============================
|
||||
% Thanks to Peter John Acklam
|
||||
%
|
||||
|
||||
function y = base64encode(x, eol)
|
||||
%BASE64ENCODE Perform base64 encoding on a string.
|
||||
%
|
||||
% BASE64ENCODE(STR, EOL) encode the given string STR. EOL is the line ending
|
||||
% sequence to use; it is optional and defaults to '\n' (ASCII decimal 10).
|
||||
% The returned encoded string is broken into lines of no more than 76
|
||||
% characters each, and each line will end with EOL unless it is empty. Let
|
||||
% EOL be empty if you do not want the encoded string broken into lines.
|
||||
%
|
||||
% STR and EOL don't have to be strings (i.e., char arrays). The only
|
||||
% requirement is that they are vectors containing values in the range 0-255.
|
||||
%
|
||||
% This function may be used to encode strings into the Base64 encoding
|
||||
% specified in RFC 2045 - MIME (Multipurpose Internet Mail Extensions). The
|
||||
% Base64 encoding is designed to represent arbitrary sequences of octets in a
|
||||
% form that need not be humanly readable. A 65-character subset
|
||||
% ([A-Za-z0-9+/=]) of US-ASCII is used, enabling 6 bits to be represented per
|
||||
% printable character.
|
||||
%
|
||||
% Examples
|
||||
% --------
|
||||
%
|
||||
% If you want to encode a large file, you should encode it in chunks that are
|
||||
% a multiple of 57 bytes. This ensures that the base64 lines line up and
|
||||
% that you do not end up with padding in the middle. 57 bytes of data fills
|
||||
% one complete base64 line (76 == 57*4/3):
|
||||
%
|
||||
% If ifid and ofid are two file identifiers opened for reading and writing,
|
||||
% respectively, then you can base64 encode the data with
|
||||
%
|
||||
% while ~feof(ifid)
|
||||
% fwrite(ofid, base64encode(fread(ifid, 60*57)));
|
||||
% end
|
||||
%
|
||||
% or, if you have enough memory,
|
||||
%
|
||||
% fwrite(ofid, base64encode(fread(ifid)));
|
||||
%
|
||||
% See also BASE64DECODE.
|
||||
|
||||
% Author: Peter John Acklam
|
||||
% Time-stamp: 2004-02-03 21:36:56 +0100
|
||||
% E-mail: pjacklam@online.no
|
||||
% URL: http://home.online.no/~pjacklam
|
||||
|
||||
if isnumeric(x)
|
||||
x = num2str(x);
|
||||
end
|
||||
|
||||
% make sure we have the EOL value
|
||||
if nargin < 2
|
||||
eol = sprintf('\n');
|
||||
else
|
||||
if sum(size(eol) > 1) > 1
|
||||
error('EOL must be a vector.');
|
||||
end
|
||||
if any(eol(:) > 255)
|
||||
error('EOL can not contain values larger than 255.');
|
||||
end
|
||||
end
|
||||
|
||||
if sum(size(x) > 1) > 1
|
||||
error('STR must be a vector.');
|
||||
end
|
||||
|
||||
x = uint8(x);
|
||||
eol = uint8(eol);
|
||||
|
||||
ndbytes = length(x); % number of decoded bytes
|
||||
nchunks = ceil(ndbytes / 3); % number of chunks/groups
|
||||
nebytes = 4 * nchunks; % number of encoded bytes
|
||||
|
||||
% add padding if necessary, to make the length of x a multiple of 3
|
||||
if rem(ndbytes, 3)
|
||||
x(end+1 : 3*nchunks) = 0;
|
||||
end
|
||||
|
||||
x = reshape(x, [3, nchunks]); % reshape the data
|
||||
y = repmat(uint8(0), 4, nchunks); % for the encoded data
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% Split up every 3 bytes into 4 pieces
|
||||
%
|
||||
% aaaaaabb bbbbcccc ccdddddd
|
||||
%
|
||||
% to form
|
||||
%
|
||||
% 00aaaaaa 00bbbbbb 00cccccc 00dddddd
|
||||
%
|
||||
y(1,:) = bitshift(x(1,:), -2); % 6 highest bits of x(1,:)
|
||||
|
||||
y(2,:) = bitshift(bitand(x(1,:), 3), 4); % 2 lowest bits of x(1,:)
|
||||
y(2,:) = bitor(y(2,:), bitshift(x(2,:), -4)); % 4 highest bits of x(2,:)
|
||||
|
||||
y(3,:) = bitshift(bitand(x(2,:), 15), 2); % 4 lowest bits of x(2,:)
|
||||
y(3,:) = bitor(y(3,:), bitshift(x(3,:), -6)); % 2 highest bits of x(3,:)
|
||||
|
||||
y(4,:) = bitand(x(3,:), 63); % 6 lowest bits of x(3,:)
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% Now perform the following mapping
|
||||
%
|
||||
% 0 - 25 -> A-Z
|
||||
% 26 - 51 -> a-z
|
||||
% 52 - 61 -> 0-9
|
||||
% 62 -> +
|
||||
% 63 -> /
|
||||
%
|
||||
% We could use a mapping vector like
|
||||
%
|
||||
% ['A':'Z', 'a':'z', '0':'9', '+/']
|
||||
%
|
||||
% but that would require an index vector of class double.
|
||||
%
|
||||
z = repmat(uint8(0), size(y));
|
||||
i = y <= 25; z(i) = 'A' + double(y(i));
|
||||
i = 26 <= y & y <= 51; z(i) = 'a' - 26 + double(y(i));
|
||||
i = 52 <= y & y <= 61; z(i) = '0' - 52 + double(y(i));
|
||||
i = y == 62; z(i) = '+';
|
||||
i = y == 63; z(i) = '/';
|
||||
y = z;
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% Add padding if necessary.
|
||||
%
|
||||
npbytes = 3 * nchunks - ndbytes; % number of padding bytes
|
||||
if npbytes
|
||||
y(end-npbytes+1 : end) = '='; % '=' is used for padding
|
||||
end
|
||||
|
||||
if isempty(eol)
|
||||
|
||||
% reshape to a row vector
|
||||
y = reshape(y, [1, nebytes]);
|
||||
|
||||
else
|
||||
|
||||
nlines = ceil(nebytes / 76); % number of lines
|
||||
neolbytes = length(eol); % number of bytes in eol string
|
||||
|
||||
% pad data so it becomes a multiple of 76 elements
|
||||
y = [y(:) ; zeros(76 * nlines - numel(y), 1)];
|
||||
y(nebytes + 1 : 76 * nlines) = 0;
|
||||
y = reshape(y, 76, nlines);
|
||||
|
||||
% insert eol strings
|
||||
eol = eol(:);
|
||||
y(end + 1 : end + neolbytes, :) = eol(:, ones(1, nlines));
|
||||
|
||||
% remove padding, but keep the last eol string
|
||||
m = nebytes + neolbytes * (nlines - 1);
|
||||
n = (76+neolbytes)*nlines - neolbytes;
|
||||
y(m+1 : n) = '';
|
||||
|
||||
% extract and reshape to row vector
|
||||
y = reshape(y, 1, m+neolbytes);
|
||||
|
||||
end
|
||||
|
||||
% output is a character array
|
||||
y = char(y);
|
||||
|
||||
end
|
||||
@@ -0,0 +1,20 @@
|
||||
% submitWeb Creates files from your code and output for web submission.
|
||||
%
|
||||
% If the submit function does not work for you, use the web-submission mechanism.
|
||||
% Call this function to produce a file for the part you wish to submit. Then,
|
||||
% submit the file to the class servers using the "Web Submission" button on the
|
||||
% Programming Exercises page on the course website.
|
||||
%
|
||||
% You should call this function without arguments (submitWeb), to receive
|
||||
% an interactive prompt for submission; optionally you can call it with the partID
|
||||
% if you so wish. Make sure your working directory is set to the directory
|
||||
% containing the submitWeb.m file and your assignment files.
|
||||
|
||||
function submitWeb(partId)
|
||||
if ~exist('partId', 'var') || isempty(partId)
|
||||
partId = [];
|
||||
end
|
||||
|
||||
submit(partId, 1);
|
||||
end
|
||||
|
||||
@@ -0,0 +1,21 @@
|
||||
function A = warmUpExercise()
|
||||
%WARMUPEXERCISE Example function in octave
|
||||
% A = WARMUPEXERCISE() is an example function that returns the 5x5 identity matrix
|
||||
|
||||
A = [];
|
||||
% ============= YOUR CODE HERE ==============
|
||||
% Instructions: Return the 5x5 identity matrix
|
||||
% In octave, we return values by defining which variables
|
||||
% represent the return values (at the top of the file)
|
||||
% and then set them accordingly.
|
||||
|
||||
|
||||
A = eye(5);
|
||||
|
||||
|
||||
|
||||
|
||||
% ===========================================
|
||||
|
||||
|
||||
end
|
||||
BIN
machine_learning/course1/mlclass-ex2-008/ex2.pdf
Normal file
BIN
machine_learning/course1/mlclass-ex2-008/ex2.pdf
Normal file
Binary file not shown.
@@ -0,0 +1,30 @@
|
||||
function [J, grad] = costFunction(theta, X, y)
|
||||
%COSTFUNCTION Compute cost and gradient for logistic regression
|
||||
% J = COSTFUNCTION(theta, X, y) computes the cost of using theta as the
|
||||
% parameter for logistic regression and the gradient of the cost
|
||||
% w.r.t. to the parameters.
|
||||
|
||||
% Initialize some useful values
|
||||
m = length(y); % number of training examples
|
||||
|
||||
% You need to return the following variables correctly
|
||||
J = 0;
|
||||
grad = zeros(size(theta));
|
||||
|
||||
% ====================== YOUR CODE HERE ======================
|
||||
% Instructions: Compute the cost of a particular choice of theta.
|
||||
% You should set J to the cost.
|
||||
% Compute the partial derivatives and set grad to the partial
|
||||
% derivatives of the cost w.r.t. each parameter in theta
|
||||
%
|
||||
% Note: grad should have the same dimensions as theta
|
||||
%
|
||||
|
||||
h = sigmoid( X*theta );
|
||||
o = ones(size(y));
|
||||
J = sum( y .* log(h) + (o-y) .* log(o-h) ) / (-m);
|
||||
grad = (X'*(h - y)) / m;
|
||||
|
||||
% =============================================================
|
||||
|
||||
end
|
||||
@@ -0,0 +1,30 @@
|
||||
function [J, grad] = costFunctionReg(theta, X, y, lambda)
|
||||
%COSTFUNCTIONREG Compute cost and gradient for logistic regression with regularization
|
||||
% J = COSTFUNCTIONREG(theta, X, y, lambda) computes the cost of using
|
||||
% theta as the parameter for regularized logistic regression and the
|
||||
% gradient of the cost w.r.t. to the parameters.
|
||||
|
||||
% Initialize some useful values
|
||||
m = length(y); % number of training examples
|
||||
|
||||
% You need to return the following variables correctly
|
||||
J = 0;
|
||||
grad = zeros(size(theta));
|
||||
|
||||
% ====================== YOUR CODE HERE ======================
|
||||
% Instructions: Compute the cost of a particular choice of theta.
|
||||
% You should set J to the cost.
|
||||
% Compute the partial derivatives and set grad to the partial
|
||||
% derivatives of the cost w.r.t. each parameter in theta
|
||||
|
||||
|
||||
h = sigmoid( X*theta );
|
||||
o = ones(size(y));
|
||||
reg = theta;
|
||||
reg(1) = 0;
|
||||
J = sum( y .* log(h) + (o-y) .* log(o-h) ) / (-m) + (lambda/(2*m))*sum(reg.^2);
|
||||
grad = (X'*(h - y)) / m + (lambda/m) * reg;
|
||||
|
||||
% =============================================================
|
||||
|
||||
end
|
||||
135
machine_learning/course1/mlclass-ex2-008/mlclass-ex2/ex2.m
Normal file
135
machine_learning/course1/mlclass-ex2-008/mlclass-ex2/ex2.m
Normal file
@@ -0,0 +1,135 @@
|
||||
%% Machine Learning Online Class - Exercise 2: Logistic Regression
|
||||
%
|
||||
% Instructions
|
||||
% ------------
|
||||
%
|
||||
% This file contains code that helps you get started on the logistic
|
||||
% regression exercise. You will need to complete the following functions
|
||||
% in this exericse:
|
||||
%
|
||||
% sigmoid.m
|
||||
% costFunction.m
|
||||
% predict.m
|
||||
% costFunctionReg.m
|
||||
%
|
||||
% For this exercise, you will not need to change any code in this file,
|
||||
% or any other files other than those mentioned above.
|
||||
%
|
||||
|
||||
%% Initialization
|
||||
clear ; close all; clc
|
||||
|
||||
%% Load Data
|
||||
% The first two columns contains the exam scores and the third column
|
||||
% contains the label.
|
||||
|
||||
data = load('ex2data1.txt');
|
||||
X = data(:, [1, 2]); y = data(:, 3);
|
||||
|
||||
%% ==================== Part 1: Plotting ====================
|
||||
% We start the exercise by first plotting the data to understand the
|
||||
% the problem we are working with.
|
||||
|
||||
fprintf(['Plotting data with + indicating (y = 1) examples and o ' ...
|
||||
'indicating (y = 0) examples.\n']);
|
||||
|
||||
%%plotData(X, y);
|
||||
|
||||
% Put some labels
|
||||
%%hold on;
|
||||
% Labels and Legend
|
||||
%%xlabel('Exam 1 score')
|
||||
%%ylabel('Exam 2 score')
|
||||
|
||||
% Specified in plot order
|
||||
%%legend('Admitted', 'Not admitted')
|
||||
%%hold off;
|
||||
|
||||
fprintf('\nProgram paused. Press enter to continue.\n');
|
||||
%%pause;
|
||||
|
||||
|
||||
%% ============ Part 2: Compute Cost and Gradient ============
|
||||
% In this part of the exercise, you will implement the cost and gradient
|
||||
% for logistic regression. You neeed to complete the code in
|
||||
% costFunction.m
|
||||
|
||||
% Setup the data matrix appropriately, and add ones for the intercept term
|
||||
[m, n] = size(X);
|
||||
|
||||
% Add intercept term to x and X_test
|
||||
X = [ones(m, 1) X];
|
||||
|
||||
% Initialize fitting parameters
|
||||
initial_theta = zeros(n + 1, 1);
|
||||
|
||||
% Compute and display initial cost and gradient
|
||||
[cost, grad] = costFunction(initial_theta, X, y);
|
||||
|
||||
fprintf('Cost at initial theta (zeros): %f\n', cost);
|
||||
fprintf('Gradient at initial theta (zeros): \n');
|
||||
fprintf(' %f \n', grad);
|
||||
|
||||
fprintf('\nProgram paused. Press enter to continue.\n');
|
||||
pause;
|
||||
|
||||
|
||||
%% ============= Part 3: Optimizing using fminunc =============
|
||||
% In this exercise, you will use a built-in function (fminunc) to find the
|
||||
% optimal parameters theta.
|
||||
|
||||
% Set options for fminunc
|
||||
options = optimset('GradObj', 'on', 'MaxIter', 400);
|
||||
|
||||
% Run fminunc to obtain the optimal theta
|
||||
% This function will return theta and the cost
|
||||
[theta, cost] = ...
|
||||
fminunc(@(t)(costFunction(t, X, y)), initial_theta, options);
|
||||
|
||||
% Print theta to screen
|
||||
fprintf('Cost at theta found by fminunc: %f\n', cost);
|
||||
fprintf('theta: \n');
|
||||
fprintf(' %f \n', theta);
|
||||
|
||||
% Plot Boundary
|
||||
plotDecisionBoundary(theta, X, y);
|
||||
|
||||
% Put some labels
|
||||
hold on;
|
||||
% Labels and Legend
|
||||
xlabel('Exam 1 score')
|
||||
ylabel('Exam 2 score')
|
||||
|
||||
% Specified in plot order
|
||||
legend('Admitted', 'Not admitted')
|
||||
hold off;
|
||||
|
||||
fprintf('\nProgram paused. Press enter to continue.\n');
|
||||
pause;
|
||||
|
||||
%% ============== Part 4: Predict and Accuracies ==============
|
||||
% After learning the parameters, you'll like to use it to predict the outcomes
|
||||
% on unseen data. In this part, you will use the logistic regression model
|
||||
% to predict the probability that a student with score 45 on exam 1 and
|
||||
% score 85 on exam 2 will be admitted.
|
||||
%
|
||||
% Furthermore, you will compute the training and test set accuracies of
|
||||
% our model.
|
||||
%
|
||||
% Your task is to complete the code in predict.m
|
||||
|
||||
% Predict probability for a student with score 45 on exam 1
|
||||
% and score 85 on exam 2
|
||||
|
||||
prob = sigmoid([1 45 85] * theta);
|
||||
fprintf(['For a student with scores 45 and 85, we predict an admission ' ...
|
||||
'probability of %f\n\n'], prob);
|
||||
|
||||
% Compute accuracy on our training set
|
||||
p = predict(theta, X);
|
||||
|
||||
fprintf('Train Accuracy: %f\n', mean(double(p == y)) * 100);
|
||||
|
||||
fprintf('\nProgram paused. Press enter to continue.\n');
|
||||
pause;
|
||||
|
||||
116
machine_learning/course1/mlclass-ex2-008/mlclass-ex2/ex2_reg.m
Normal file
116
machine_learning/course1/mlclass-ex2-008/mlclass-ex2/ex2_reg.m
Normal file
@@ -0,0 +1,116 @@
|
||||
%% Machine Learning Online Class - Exercise 2: Logistic Regression
|
||||
%
|
||||
% Instructions
|
||||
% ------------
|
||||
%
|
||||
% This file contains code that helps you get started on the second part
|
||||
% of the exercise which covers regularization with logistic regression.
|
||||
%
|
||||
% You will need to complete the following functions in this exericse:
|
||||
%
|
||||
% sigmoid.m
|
||||
% costFunction.m
|
||||
% predict.m
|
||||
% costFunctionReg.m
|
||||
%
|
||||
% For this exercise, you will not need to change any code in this file,
|
||||
% or any other files other than those mentioned above.
|
||||
%
|
||||
|
||||
%% Initialization
|
||||
clear ; close all; clc
|
||||
|
||||
%% Load Data
|
||||
% The first two columns contains the X values and the third column
|
||||
% contains the label (y).
|
||||
|
||||
data = load('ex2data2.txt');
|
||||
X = data(:, [1, 2]); y = data(:, 3);
|
||||
|
||||
plotData(X, y);
|
||||
|
||||
% Put some labels
|
||||
hold on;
|
||||
|
||||
% Labels and Legend
|
||||
xlabel('Microchip Test 1')
|
||||
ylabel('Microchip Test 2')
|
||||
|
||||
% Specified in plot order
|
||||
legend('y = 1', 'y = 0')
|
||||
hold off;
|
||||
|
||||
|
||||
%% =========== Part 1: Regularized Logistic Regression ============
|
||||
% In this part, you are given a dataset with data points that are not
|
||||
% linearly separable. However, you would still like to use logistic
|
||||
% regression to classify the data points.
|
||||
%
|
||||
% To do so, you introduce more features to use -- in particular, you add
|
||||
% polynomial features to our data matrix (similar to polynomial
|
||||
% regression).
|
||||
%
|
||||
|
||||
% Add Polynomial Features
|
||||
|
||||
% Note that mapFeature also adds a column of ones for us, so the intercept
|
||||
% term is handled
|
||||
X = mapFeature(X(:,1), X(:,2));
|
||||
|
||||
% Initialize fitting parameters
|
||||
initial_theta = zeros(size(X, 2), 1);
|
||||
|
||||
% Set regularization parameter lambda to 1
|
||||
lambda = 1;
|
||||
|
||||
% Compute and display initial cost and gradient for regularized logistic
|
||||
% regression
|
||||
[cost, grad] = costFunctionReg(initial_theta, X, y, lambda);
|
||||
|
||||
fprintf('Cost at initial theta (zeros): %f\n', cost);
|
||||
|
||||
fprintf('\nProgram paused. Press enter to continue.\n');
|
||||
pause;
|
||||
|
||||
%% ============= Part 2: Regularization and Accuracies =============
|
||||
% Optional Exercise:
|
||||
% In this part, you will get to try different values of lambda and
|
||||
% see how regularization affects the decision coundart
|
||||
%
|
||||
% Try the following values of lambda (0, 1, 10, 100).
|
||||
%
|
||||
% How does the decision boundary change when you vary lambda? How does
|
||||
% the training set accuracy vary?
|
||||
%
|
||||
|
||||
% Initialize fitting parameters
|
||||
initial_theta = zeros(size(X, 2), 1);
|
||||
|
||||
% Set regularization parameter lambda to 1 (you should vary this)
|
||||
lambda = 1;
|
||||
|
||||
% Set Options
|
||||
options = optimset('GradObj', 'on', 'MaxIter', 400);
|
||||
|
||||
% Optimize
|
||||
[theta, J, exit_flag] = ...
|
||||
fminunc(@(t)(costFunctionReg(t, X, y, lambda)), initial_theta, options);
|
||||
|
||||
% Plot Boundary
|
||||
plotDecisionBoundary(theta, X, y);
|
||||
hold on;
|
||||
title(sprintf('lambda = %g', lambda))
|
||||
|
||||
% Labels and Legend
|
||||
xlabel('Microchip Test 1')
|
||||
ylabel('Microchip Test 2')
|
||||
|
||||
legend('y = 1', 'y = 0', 'Decision boundary')
|
||||
hold off;
|
||||
|
||||
% Compute accuracy on our training set
|
||||
p = predict(theta, X);
|
||||
|
||||
fprintf('Train Accuracy: %f\n', mean(double(p == y)) * 100);
|
||||
|
||||
|
||||
@@ -0,0 +1,100 @@
|
||||
34.62365962451697,78.0246928153624,0
|
||||
30.28671076822607,43.89499752400101,0
|
||||
35.84740876993872,72.90219802708364,0
|
||||
60.18259938620976,86.30855209546826,1
|
||||
79.0327360507101,75.3443764369103,1
|
||||
45.08327747668339,56.3163717815305,0
|
||||
61.10666453684766,96.51142588489624,1
|
||||
75.02474556738889,46.55401354116538,1
|
||||
76.09878670226257,87.42056971926803,1
|
||||
84.43281996120035,43.53339331072109,1
|
||||
95.86155507093572,38.22527805795094,0
|
||||
75.01365838958247,30.60326323428011,0
|
||||
82.30705337399482,76.48196330235604,1
|
||||
69.36458875970939,97.71869196188608,1
|
||||
39.53833914367223,76.03681085115882,0
|
||||
53.9710521485623,89.20735013750205,1
|
||||
69.07014406283025,52.74046973016765,1
|
||||
67.94685547711617,46.67857410673128,0
|
||||
70.66150955499435,92.92713789364831,1
|
||||
76.97878372747498,47.57596364975532,1
|
||||
67.37202754570876,42.83843832029179,0
|
||||
89.67677575072079,65.79936592745237,1
|
||||
50.534788289883,48.85581152764205,0
|
||||
34.21206097786789,44.20952859866288,0
|
||||
77.9240914545704,68.9723599933059,1
|
||||
62.27101367004632,69.95445795447587,1
|
||||
80.1901807509566,44.82162893218353,1
|
||||
93.114388797442,38.80067033713209,0
|
||||
61.83020602312595,50.25610789244621,0
|
||||
38.78580379679423,64.99568095539578,0
|
||||
61.379289447425,72.80788731317097,1
|
||||
85.40451939411645,57.05198397627122,1
|
||||
52.10797973193984,63.12762376881715,0
|
||||
52.04540476831827,69.43286012045222,1
|
||||
40.23689373545111,71.16774802184875,0
|
||||
54.63510555424817,52.21388588061123,0
|
||||
33.91550010906887,98.86943574220611,0
|
||||
64.17698887494485,80.90806058670817,1
|
||||
74.78925295941542,41.57341522824434,0
|
||||
34.1836400264419,75.2377203360134,0
|
||||
83.90239366249155,56.30804621605327,1
|
||||
51.54772026906181,46.85629026349976,0
|
||||
94.44336776917852,65.56892160559052,1
|
||||
82.36875375713919,40.61825515970618,0
|
||||
51.04775177128865,45.82270145776001,0
|
||||
62.22267576120188,52.06099194836679,0
|
||||
77.19303492601364,70.45820000180959,1
|
||||
97.77159928000232,86.7278223300282,1
|
||||
62.07306379667647,96.76882412413983,1
|
||||
91.56497449807442,88.69629254546599,1
|
||||
79.94481794066932,74.16311935043758,1
|
||||
99.2725269292572,60.99903099844988,1
|
||||
90.54671411399852,43.39060180650027,1
|
||||
34.52451385320009,60.39634245837173,0
|
||||
50.2864961189907,49.80453881323059,0
|
||||
49.58667721632031,59.80895099453265,0
|
||||
97.64563396007767,68.86157272420604,1
|
||||
32.57720016809309,95.59854761387875,0
|
||||
74.24869136721598,69.82457122657193,1
|
||||
71.79646205863379,78.45356224515052,1
|
||||
75.3956114656803,85.75993667331619,1
|
||||
35.28611281526193,47.02051394723416,0
|
||||
56.25381749711624,39.26147251058019,0
|
||||
30.05882244669796,49.59297386723685,0
|
||||
44.66826172480893,66.45008614558913,0
|
||||
66.56089447242954,41.09209807936973,0
|
||||
40.45755098375164,97.53518548909936,1
|
||||
49.07256321908844,51.88321182073966,0
|
||||
80.27957401466998,92.11606081344084,1
|
||||
66.74671856944039,60.99139402740988,1
|
||||
32.72283304060323,43.30717306430063,0
|
||||
64.0393204150601,78.03168802018232,1
|
||||
72.34649422579923,96.22759296761404,1
|
||||
60.45788573918959,73.09499809758037,1
|
||||
58.84095621726802,75.85844831279042,1
|
||||
99.82785779692128,72.36925193383885,1
|
||||
47.26426910848174,88.47586499559782,1
|
||||
50.45815980285988,75.80985952982456,1
|
||||
60.45555629271532,42.50840943572217,0
|
||||
82.22666157785568,42.71987853716458,0
|
||||
88.9138964166533,69.80378889835472,1
|
||||
94.83450672430196,45.69430680250754,1
|
||||
67.31925746917527,66.58935317747915,1
|
||||
57.23870631569862,59.51428198012956,1
|
||||
80.36675600171273,90.96014789746954,1
|
||||
68.46852178591112,85.59430710452014,1
|
||||
42.0754545384731,78.84478600148043,0
|
||||
75.47770200533905,90.42453899753964,1
|
||||
78.63542434898018,96.64742716885644,1
|
||||
52.34800398794107,60.76950525602592,0
|
||||
94.09433112516793,77.15910509073893,1
|
||||
90.44855097096364,87.50879176484702,1
|
||||
55.48216114069585,35.57070347228866,0
|
||||
74.49269241843041,84.84513684930135,1
|
||||
89.84580670720979,45.35828361091658,1
|
||||
83.48916274498238,48.38028579728175,1
|
||||
42.2617008099817,87.10385094025457,1
|
||||
99.31500880510394,68.77540947206617,1
|
||||
55.34001756003703,64.9319380069486,1
|
||||
74.77589300092767,89.52981289513276,1
|
||||
@@ -0,0 +1,118 @@
|
||||
0.051267,0.69956,1
|
||||
-0.092742,0.68494,1
|
||||
-0.21371,0.69225,1
|
||||
-0.375,0.50219,1
|
||||
-0.51325,0.46564,1
|
||||
-0.52477,0.2098,1
|
||||
-0.39804,0.034357,1
|
||||
-0.30588,-0.19225,1
|
||||
0.016705,-0.40424,1
|
||||
0.13191,-0.51389,1
|
||||
0.38537,-0.56506,1
|
||||
0.52938,-0.5212,1
|
||||
0.63882,-0.24342,1
|
||||
0.73675,-0.18494,1
|
||||
0.54666,0.48757,1
|
||||
0.322,0.5826,1
|
||||
0.16647,0.53874,1
|
||||
-0.046659,0.81652,1
|
||||
-0.17339,0.69956,1
|
||||
-0.47869,0.63377,1
|
||||
-0.60541,0.59722,1
|
||||
-0.62846,0.33406,1
|
||||
-0.59389,0.005117,1
|
||||
-0.42108,-0.27266,1
|
||||
-0.11578,-0.39693,1
|
||||
0.20104,-0.60161,1
|
||||
0.46601,-0.53582,1
|
||||
0.67339,-0.53582,1
|
||||
-0.13882,0.54605,1
|
||||
-0.29435,0.77997,1
|
||||
-0.26555,0.96272,1
|
||||
-0.16187,0.8019,1
|
||||
-0.17339,0.64839,1
|
||||
-0.28283,0.47295,1
|
||||
-0.36348,0.31213,1
|
||||
-0.30012,0.027047,1
|
||||
-0.23675,-0.21418,1
|
||||
-0.06394,-0.18494,1
|
||||
0.062788,-0.16301,1
|
||||
0.22984,-0.41155,1
|
||||
0.2932,-0.2288,1
|
||||
0.48329,-0.18494,1
|
||||
0.64459,-0.14108,1
|
||||
0.46025,0.012427,1
|
||||
0.6273,0.15863,1
|
||||
0.57546,0.26827,1
|
||||
0.72523,0.44371,1
|
||||
0.22408,0.52412,1
|
||||
0.44297,0.67032,1
|
||||
0.322,0.69225,1
|
||||
0.13767,0.57529,1
|
||||
-0.0063364,0.39985,1
|
||||
-0.092742,0.55336,1
|
||||
-0.20795,0.35599,1
|
||||
-0.20795,0.17325,1
|
||||
-0.43836,0.21711,1
|
||||
-0.21947,-0.016813,1
|
||||
-0.13882,-0.27266,1
|
||||
0.18376,0.93348,0
|
||||
0.22408,0.77997,0
|
||||
0.29896,0.61915,0
|
||||
0.50634,0.75804,0
|
||||
0.61578,0.7288,0
|
||||
0.60426,0.59722,0
|
||||
0.76555,0.50219,0
|
||||
0.92684,0.3633,0
|
||||
0.82316,0.27558,0
|
||||
0.96141,0.085526,0
|
||||
0.93836,0.012427,0
|
||||
0.86348,-0.082602,0
|
||||
0.89804,-0.20687,0
|
||||
0.85196,-0.36769,0
|
||||
0.82892,-0.5212,0
|
||||
0.79435,-0.55775,0
|
||||
0.59274,-0.7405,0
|
||||
0.51786,-0.5943,0
|
||||
0.46601,-0.41886,0
|
||||
0.35081,-0.57968,0
|
||||
0.28744,-0.76974,0
|
||||
0.085829,-0.75512,0
|
||||
0.14919,-0.57968,0
|
||||
-0.13306,-0.4481,0
|
||||
-0.40956,-0.41155,0
|
||||
-0.39228,-0.25804,0
|
||||
-0.74366,-0.25804,0
|
||||
-0.69758,0.041667,0
|
||||
-0.75518,0.2902,0
|
||||
-0.69758,0.68494,0
|
||||
-0.4038,0.70687,0
|
||||
-0.38076,0.91886,0
|
||||
-0.50749,0.90424,0
|
||||
-0.54781,0.70687,0
|
||||
0.10311,0.77997,0
|
||||
0.057028,0.91886,0
|
||||
-0.10426,0.99196,0
|
||||
-0.081221,1.1089,0
|
||||
0.28744,1.087,0
|
||||
0.39689,0.82383,0
|
||||
0.63882,0.88962,0
|
||||
0.82316,0.66301,0
|
||||
0.67339,0.64108,0
|
||||
1.0709,0.10015,0
|
||||
-0.046659,-0.57968,0
|
||||
-0.23675,-0.63816,0
|
||||
-0.15035,-0.36769,0
|
||||
-0.49021,-0.3019,0
|
||||
-0.46717,-0.13377,0
|
||||
-0.28859,-0.060673,0
|
||||
-0.61118,-0.067982,0
|
||||
-0.66302,-0.21418,0
|
||||
-0.59965,-0.41886,0
|
||||
-0.72638,-0.082602,0
|
||||
-0.83007,0.31213,0
|
||||
-0.72062,0.53874,0
|
||||
-0.59389,0.49488,0
|
||||
-0.48445,0.99927,0
|
||||
-0.0063364,0.99927,0
|
||||
0.63265,-0.030612,0
|
||||
@@ -0,0 +1,28 @@
|
||||
function [theta,hist] = findmin(CF, X, y, theta, alpha, num_iters)
|
||||
%GRADIENTDESCENTMULTI Performs gradient descent to learn theta
|
||||
% theta = GRADIENTDESCENTMULTI(x, y, theta, alpha, num_iters) updates theta by
|
||||
% taking num_iters gradient steps with learning rate alpha
|
||||
|
||||
hist = zeros(num_iters+1, length(theta));
|
||||
hist(1,:) = theta';
|
||||
|
||||
for iter = 1:num_iters
|
||||
|
||||
% ====================== YOUR CODE HERE ======================
|
||||
% Instructions: Perform a single gradient step on the parameter vector
|
||||
% theta.
|
||||
%
|
||||
% Hint: While debugging, it can be useful to print out the values
|
||||
% of the cost function (computeCostMulti) and gradient here.
|
||||
%
|
||||
|
||||
|
||||
[J,g] = CF( theta, X, y );
|
||||
|
||||
theta = theta - alpha * g;
|
||||
|
||||
hist(iter+1,:) = theta';
|
||||
|
||||
end
|
||||
|
||||
end
|
||||
@@ -0,0 +1,21 @@
|
||||
function out = mapFeature(X1, X2)
|
||||
% MAPFEATURE Feature mapping function to polynomial features
|
||||
%
|
||||
% MAPFEATURE(X1, X2) maps the two input features
|
||||
% to quadratic features used in the regularization exercise.
|
||||
%
|
||||
% Returns a new feature array with more features, comprising of
|
||||
% X1, X2, X1.^2, X2.^2, X1*X2, X1*X2.^2, etc..
|
||||
%
|
||||
% Inputs X1, X2 must be the same size
|
||||
%
|
||||
|
||||
degree = 6;
|
||||
out = ones(size(X1(:,1)));
|
||||
for i = 1:degree
|
||||
for j = 0:i
|
||||
out(:, end+1) = (X1.^(i-j)).*(X2.^j);
|
||||
end
|
||||
end
|
||||
|
||||
end
|
||||
@@ -0,0 +1,29 @@
|
||||
function plotData(X, y)
|
||||
%PLOTDATA Plots the data points X and y into a new figure
|
||||
% PLOTDATA(x,y) plots the data points with + for the positive examples
|
||||
% and o for the negative examples. X is assumed to be a Mx2 matrix.
|
||||
|
||||
% Create New Figure
|
||||
figure; hold on;
|
||||
|
||||
% ====================== YOUR CODE HERE ======================
|
||||
% Instructions: Plot the positive and negative examples on a
|
||||
% 2D plot, using the option 'k+' for the positive
|
||||
% examples and 'ko' for the negative examples.
|
||||
%
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
% =========================================================================
|
||||
|
||||
|
||||
|
||||
hold off;
|
||||
|
||||
end
|
||||
@@ -0,0 +1,48 @@
|
||||
function plotDecisionBoundary(theta, X, y)
|
||||
%PLOTDECISIONBOUNDARY Plots the data points X and y into a new figure with
|
||||
%the decision boundary defined by theta
|
||||
% PLOTDECISIONBOUNDARY(theta, X,y) plots the data points with + for the
|
||||
% positive examples and o for the negative examples. X is assumed to be
|
||||
% a either
|
||||
% 1) Mx3 matrix, where the first column is an all-ones column for the
|
||||
% intercept.
|
||||
% 2) MxN, N>3 matrix, where the first column is all-ones
|
||||
|
||||
% Plot Data
|
||||
plotData(X(:,2:3), y);
|
||||
hold on
|
||||
|
||||
if size(X, 2) <= 3
|
||||
% Only need 2 points to define a line, so choose two endpoints
|
||||
plot_x = [min(X(:,2))-2, max(X(:,2))+2];
|
||||
|
||||
% Calculate the decision boundary line
|
||||
plot_y = (-1./theta(3)).*(theta(2).*plot_x + theta(1));
|
||||
|
||||
% Plot, and adjust axes for better viewing
|
||||
plot(plot_x, plot_y)
|
||||
|
||||
% Legend, specific for the exercise
|
||||
legend('Admitted', 'Not admitted', 'Decision Boundary')
|
||||
axis([30, 100, 30, 100])
|
||||
else
|
||||
% Here is the grid range
|
||||
u = linspace(-1, 1.5, 50);
|
||||
v = linspace(-1, 1.5, 50);
|
||||
|
||||
z = zeros(length(u), length(v));
|
||||
% Evaluate z = theta*x over the grid
|
||||
for i = 1:length(u)
|
||||
for j = 1:length(v)
|
||||
z(i,j) = mapFeature(u(i), v(j))*theta;
|
||||
end
|
||||
end
|
||||
z = z'; % important to transpose z before calling contour
|
||||
|
||||
% Plot z = 0
|
||||
% Notice you need to specify the range [0, 0]
|
||||
contour(u, v, z, [0, 0], 'LineWidth', 2)
|
||||
end
|
||||
hold off
|
||||
|
||||
end
|
||||
@@ -0,0 +1,27 @@
|
||||
function p = predict(theta, X)
|
||||
%PREDICT Predict whether the label is 0 or 1 using learned logistic
|
||||
%regression parameters theta
|
||||
% p = PREDICT(theta, X) computes the predictions for X using a
|
||||
% threshold at 0.5 (i.e., if sigmoid(theta'*x) >= 0.5, predict 1)
|
||||
|
||||
m = size(X, 1); % Number of training examples
|
||||
|
||||
% You need to return the following variables correctly
|
||||
p = zeros(m, 1);
|
||||
|
||||
% ====================== YOUR CODE HERE ======================
|
||||
% Instructions: Complete the following code to make predictions using
|
||||
% your learned logistic regression parameters.
|
||||
% You should set p to a vector of 0's and 1's
|
||||
%
|
||||
|
||||
h = sigmoid( X*theta );
|
||||
p = round(h);
|
||||
|
||||
|
||||
|
||||
|
||||
% =========================================================================
|
||||
|
||||
|
||||
end
|
||||
@@ -0,0 +1,19 @@
|
||||
function g = sigmoid(z)
|
||||
%SIGMOID Compute sigmoid functoon
|
||||
% J = SIGMOID(z) computes the sigmoid of z.
|
||||
|
||||
% You need to return the following variables correctly
|
||||
g = zeros(size(z));
|
||||
|
||||
% ====================== YOUR CODE HERE ======================
|
||||
% Instructions: Compute the sigmoid of each value of z (z can be a matrix,
|
||||
% vector or scalar).
|
||||
|
||||
|
||||
g = ones(size(z)) ./ (ones(size(z)) + exp(-1*z));
|
||||
|
||||
|
||||
|
||||
% =============================================================
|
||||
|
||||
end
|
||||
574
machine_learning/course1/mlclass-ex2-008/mlclass-ex2/submit.m
Normal file
574
machine_learning/course1/mlclass-ex2-008/mlclass-ex2/submit.m
Normal file
@@ -0,0 +1,574 @@
|
||||
function submit(partId, webSubmit)
|
||||
%SUBMIT Submit your code and output to the ml-class servers
|
||||
% SUBMIT() will connect to the ml-class server and submit your solution
|
||||
|
||||
fprintf('==\n== [ml-class] Submitting Solutions | Programming Exercise %s\n==\n', ...
|
||||
homework_id());
|
||||
if ~exist('partId', 'var') || isempty(partId)
|
||||
partId = promptPart();
|
||||
end
|
||||
|
||||
if ~exist('webSubmit', 'var') || isempty(webSubmit)
|
||||
webSubmit = 0; % submit directly by default
|
||||
end
|
||||
|
||||
% Check valid partId
|
||||
partNames = validParts();
|
||||
if ~isValidPartId(partId)
|
||||
fprintf('!! Invalid homework part selected.\n');
|
||||
fprintf('!! Expected an integer from 1 to %d.\n', numel(partNames) + 1);
|
||||
fprintf('!! Submission Cancelled\n');
|
||||
return
|
||||
end
|
||||
|
||||
if ~exist('ml_login_data.mat','file')
|
||||
[login password] = loginPrompt();
|
||||
save('ml_login_data.mat','login','password');
|
||||
else
|
||||
load('ml_login_data.mat');
|
||||
[login password] = quickLogin(login, password);
|
||||
save('ml_login_data.mat','login','password');
|
||||
end
|
||||
|
||||
if isempty(login)
|
||||
fprintf('!! Submission Cancelled\n');
|
||||
return
|
||||
end
|
||||
|
||||
fprintf('\n== Connecting to ml-class ... ');
|
||||
if exist('OCTAVE_VERSION')
|
||||
fflush(stdout);
|
||||
end
|
||||
|
||||
% Setup submit list
|
||||
if partId == numel(partNames) + 1
|
||||
submitParts = 1:numel(partNames);
|
||||
else
|
||||
submitParts = [partId];
|
||||
end
|
||||
|
||||
for s = 1:numel(submitParts)
|
||||
thisPartId = submitParts(s);
|
||||
if (~webSubmit) % submit directly to server
|
||||
[login, ch, signature, auxstring] = getChallenge(login, thisPartId);
|
||||
if isempty(login) || isempty(ch) || isempty(signature)
|
||||
% Some error occured, error string in first return element.
|
||||
fprintf('\n!! Error: %s\n\n', login);
|
||||
return
|
||||
end
|
||||
|
||||
% Attempt Submission with Challenge
|
||||
ch_resp = challengeResponse(login, password, ch);
|
||||
|
||||
[result, str] = submitSolution(login, ch_resp, thisPartId, ...
|
||||
output(thisPartId, auxstring), source(thisPartId), signature);
|
||||
|
||||
partName = partNames{thisPartId};
|
||||
|
||||
fprintf('\n== [ml-class] Submitted Assignment %s - Part %d - %s\n', ...
|
||||
homework_id(), thisPartId, partName);
|
||||
fprintf('== %s\n', strtrim(str));
|
||||
|
||||
if exist('OCTAVE_VERSION')
|
||||
fflush(stdout);
|
||||
end
|
||||
else
|
||||
[result] = submitSolutionWeb(login, thisPartId, output(thisPartId), ...
|
||||
source(thisPartId));
|
||||
result = base64encode(result);
|
||||
|
||||
fprintf('\nSave as submission file [submit_ex%s_part%d.txt (enter to accept default)]:', ...
|
||||
homework_id(), thisPartId);
|
||||
saveAsFile = input('', 's');
|
||||
if (isempty(saveAsFile))
|
||||
saveAsFile = sprintf('submit_ex%s_part%d.txt', homework_id(), thisPartId);
|
||||
end
|
||||
|
||||
fid = fopen(saveAsFile, 'w');
|
||||
if (fid)
|
||||
fwrite(fid, result);
|
||||
fclose(fid);
|
||||
fprintf('\nSaved your solutions to %s.\n\n', saveAsFile);
|
||||
fprintf(['You can now submit your solutions through the web \n' ...
|
||||
'form in the programming exercises. Select the corresponding \n' ...
|
||||
'programming exercise to access the form.\n']);
|
||||
|
||||
else
|
||||
fprintf('Unable to save to %s\n\n', saveAsFile);
|
||||
fprintf(['You can create a submission file by saving the \n' ...
|
||||
'following text in a file: (press enter to continue)\n\n']);
|
||||
pause;
|
||||
fprintf(result);
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
% ================== CONFIGURABLES FOR EACH HOMEWORK ==================
|
||||
|
||||
function id = homework_id()
|
||||
id = '2';
|
||||
end
|
||||
|
||||
function [partNames] = validParts()
|
||||
partNames = { 'Sigmoid Function ', ...
|
||||
'Logistic Regression Cost', ...
|
||||
'Logistic Regression Gradient', ...
|
||||
'Predict', ...
|
||||
'Regularized Logistic Regression Cost' ...
|
||||
'Regularized Logistic Regression Gradient' ...
|
||||
};
|
||||
end
|
||||
|
||||
function srcs = sources()
|
||||
% Separated by part
|
||||
srcs = { { 'sigmoid.m' }, ...
|
||||
{ 'costFunction.m' }, ...
|
||||
{ 'costFunction.m' }, ...
|
||||
{ 'predict.m' }, ...
|
||||
{ 'costFunctionReg.m' }, ...
|
||||
{ 'costFunctionReg.m' } };
|
||||
end
|
||||
|
||||
function out = output(partId, auxstring)
|
||||
% Random Test Cases
|
||||
X = [ones(20,1) (exp(1) * sin(1:1:20))' (exp(0.5) * cos(1:1:20))'];
|
||||
y = sin(X(:,1) + X(:,2)) > 0;
|
||||
if partId == 1
|
||||
out = sprintf('%0.5f ', sigmoid(X));
|
||||
elseif partId == 2
|
||||
out = sprintf('%0.5f ', costFunction([0.25 0.5 -0.5]', X, y));
|
||||
elseif partId == 3
|
||||
[cost, grad] = costFunction([0.25 0.5 -0.5]', X, y);
|
||||
out = sprintf('%0.5f ', grad);
|
||||
elseif partId == 4
|
||||
out = sprintf('%0.5f ', predict([0.25 0.5 -0.5]', X));
|
||||
elseif partId == 5
|
||||
out = sprintf('%0.5f ', costFunctionReg([0.25 0.5 -0.5]', X, y, 0.1));
|
||||
elseif partId == 6
|
||||
[cost, grad] = costFunctionReg([0.25 0.5 -0.5]', X, y, 0.1);
|
||||
out = sprintf('%0.5f ', grad);
|
||||
end
|
||||
end
|
||||
|
||||
|
||||
% ====================== SERVER CONFIGURATION ===========================
|
||||
|
||||
% ***************** REMOVE -staging WHEN YOU DEPLOY *********************
|
||||
function url = site_url()
|
||||
url = 'http://class.coursera.org/ml-008';
|
||||
end
|
||||
|
||||
function url = challenge_url()
|
||||
url = [site_url() '/assignment/challenge'];
|
||||
end
|
||||
|
||||
function url = submit_url()
|
||||
url = [site_url() '/assignment/submit'];
|
||||
end
|
||||
|
||||
% ========================= CHALLENGE HELPERS =========================
|
||||
|
||||
function src = source(partId)
|
||||
src = '';
|
||||
src_files = sources();
|
||||
if partId <= numel(src_files)
|
||||
flist = src_files{partId};
|
||||
for i = 1:numel(flist)
|
||||
fid = fopen(flist{i});
|
||||
if (fid == -1)
|
||||
error('Error opening %s (is it missing?)', flist{i});
|
||||
end
|
||||
line = fgets(fid);
|
||||
while ischar(line)
|
||||
src = [src line];
|
||||
line = fgets(fid);
|
||||
end
|
||||
fclose(fid);
|
||||
src = [src '||||||||'];
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
function ret = isValidPartId(partId)
|
||||
partNames = validParts();
|
||||
ret = (~isempty(partId)) && (partId >= 1) && (partId <= numel(partNames) + 1);
|
||||
end
|
||||
|
||||
function partId = promptPart()
|
||||
fprintf('== Select which part(s) to submit:\n');
|
||||
partNames = validParts();
|
||||
srcFiles = sources();
|
||||
for i = 1:numel(partNames)
|
||||
fprintf('== %d) %s [', i, partNames{i});
|
||||
fprintf(' %s ', srcFiles{i}{:});
|
||||
fprintf(']\n');
|
||||
end
|
||||
fprintf('== %d) All of the above \n==\nEnter your choice [1-%d]: ', ...
|
||||
numel(partNames) + 1, numel(partNames) + 1);
|
||||
selPart = input('', 's');
|
||||
partId = str2num(selPart);
|
||||
if ~isValidPartId(partId)
|
||||
partId = -1;
|
||||
end
|
||||
end
|
||||
|
||||
function [email,ch,signature,auxstring] = getChallenge(email, part)
|
||||
str = urlread(challenge_url(), 'post', {'email_address', email, 'assignment_part_sid', [homework_id() '-' num2str(part)], 'response_encoding', 'delim'});
|
||||
|
||||
str = strtrim(str);
|
||||
r = struct;
|
||||
while(numel(str) > 0)
|
||||
[f, str] = strtok (str, '|');
|
||||
[v, str] = strtok (str, '|');
|
||||
r = setfield(r, f, v);
|
||||
end
|
||||
|
||||
email = getfield(r, 'email_address');
|
||||
ch = getfield(r, 'challenge_key');
|
||||
signature = getfield(r, 'state');
|
||||
auxstring = getfield(r, 'challenge_aux_data');
|
||||
end
|
||||
|
||||
function [result, str] = submitSolutionWeb(email, part, output, source)
|
||||
|
||||
result = ['{"assignment_part_sid":"' base64encode([homework_id() '-' num2str(part)], '') '",' ...
|
||||
'"email_address":"' base64encode(email, '') '",' ...
|
||||
'"submission":"' base64encode(output, '') '",' ...
|
||||
'"submission_aux":"' base64encode(source, '') '"' ...
|
||||
'}'];
|
||||
str = 'Web-submission';
|
||||
end
|
||||
|
||||
function [result, str] = submitSolution(email, ch_resp, part, output, ...
|
||||
source, signature)
|
||||
|
||||
params = {'assignment_part_sid', [homework_id() '-' num2str(part)], ...
|
||||
'email_address', email, ...
|
||||
'submission', base64encode(output, ''), ...
|
||||
'submission_aux', base64encode(source, ''), ...
|
||||
'challenge_response', ch_resp, ...
|
||||
'state', signature};
|
||||
|
||||
str = urlread(submit_url(), 'post', params);
|
||||
|
||||
% Parse str to read for success / failure
|
||||
result = 0;
|
||||
|
||||
end
|
||||
|
||||
% =========================== LOGIN HELPERS ===========================
|
||||
|
||||
function [login password] = loginPrompt()
|
||||
% Prompt for password
|
||||
[login password] = basicPrompt();
|
||||
|
||||
if isempty(login) || isempty(password)
|
||||
login = []; password = [];
|
||||
end
|
||||
end
|
||||
|
||||
|
||||
function [login password] = basicPrompt()
|
||||
login = input('Login (Email address): ', 's');
|
||||
password = input('Password: ', 's');
|
||||
end
|
||||
|
||||
function [login password] = quickLogin(login,password)
|
||||
disp(['You are currently logged in as ' login '.']);
|
||||
cont_token = input('Is this you? (y/n - type n to reenter password)','s');
|
||||
if(isempty(cont_token) || cont_token(1)=='Y'||cont_token(1)=='y')
|
||||
return;
|
||||
else
|
||||
[login password] = loginPrompt();
|
||||
end
|
||||
end
|
||||
|
||||
function [str] = challengeResponse(email, passwd, challenge)
|
||||
str = sha1([challenge passwd]);
|
||||
end
|
||||
|
||||
% =============================== SHA-1 ================================
|
||||
|
||||
function hash = sha1(str)
|
||||
|
||||
% Initialize variables
|
||||
h0 = uint32(1732584193);
|
||||
h1 = uint32(4023233417);
|
||||
h2 = uint32(2562383102);
|
||||
h3 = uint32(271733878);
|
||||
h4 = uint32(3285377520);
|
||||
|
||||
% Convert to word array
|
||||
strlen = numel(str);
|
||||
|
||||
% Break string into chars and append the bit 1 to the message
|
||||
mC = [double(str) 128];
|
||||
mC = [mC zeros(1, 4-mod(numel(mC), 4), 'uint8')];
|
||||
|
||||
numB = strlen * 8;
|
||||
if exist('idivide')
|
||||
numC = idivide(uint32(numB + 65), 512, 'ceil');
|
||||
else
|
||||
numC = ceil(double(numB + 65)/512);
|
||||
end
|
||||
numW = numC * 16;
|
||||
mW = zeros(numW, 1, 'uint32');
|
||||
|
||||
idx = 1;
|
||||
for i = 1:4:strlen + 1
|
||||
mW(idx) = bitor(bitor(bitor( ...
|
||||
bitshift(uint32(mC(i)), 24), ...
|
||||
bitshift(uint32(mC(i+1)), 16)), ...
|
||||
bitshift(uint32(mC(i+2)), 8)), ...
|
||||
uint32(mC(i+3)));
|
||||
idx = idx + 1;
|
||||
end
|
||||
|
||||
% Append length of message
|
||||
mW(numW - 1) = uint32(bitshift(uint64(numB), -32));
|
||||
mW(numW) = uint32(bitshift(bitshift(uint64(numB), 32), -32));
|
||||
|
||||
% Process the message in successive 512-bit chs
|
||||
for cId = 1 : double(numC)
|
||||
cSt = (cId - 1) * 16 + 1;
|
||||
cEnd = cId * 16;
|
||||
ch = mW(cSt : cEnd);
|
||||
|
||||
% Extend the sixteen 32-bit words into eighty 32-bit words
|
||||
for j = 17 : 80
|
||||
ch(j) = ch(j - 3);
|
||||
ch(j) = bitxor(ch(j), ch(j - 8));
|
||||
ch(j) = bitxor(ch(j), ch(j - 14));
|
||||
ch(j) = bitxor(ch(j), ch(j - 16));
|
||||
ch(j) = bitrotate(ch(j), 1);
|
||||
end
|
||||
|
||||
% Initialize hash value for this ch
|
||||
a = h0;
|
||||
b = h1;
|
||||
c = h2;
|
||||
d = h3;
|
||||
e = h4;
|
||||
|
||||
% Main loop
|
||||
for i = 1 : 80
|
||||
if(i >= 1 && i <= 20)
|
||||
f = bitor(bitand(b, c), bitand(bitcmp(b), d));
|
||||
k = uint32(1518500249);
|
||||
elseif(i >= 21 && i <= 40)
|
||||
f = bitxor(bitxor(b, c), d);
|
||||
k = uint32(1859775393);
|
||||
elseif(i >= 41 && i <= 60)
|
||||
f = bitor(bitor(bitand(b, c), bitand(b, d)), bitand(c, d));
|
||||
k = uint32(2400959708);
|
||||
elseif(i >= 61 && i <= 80)
|
||||
f = bitxor(bitxor(b, c), d);
|
||||
k = uint32(3395469782);
|
||||
end
|
||||
|
||||
t = bitrotate(a, 5);
|
||||
t = bitadd(t, f);
|
||||
t = bitadd(t, e);
|
||||
t = bitadd(t, k);
|
||||
t = bitadd(t, ch(i));
|
||||
e = d;
|
||||
d = c;
|
||||
c = bitrotate(b, 30);
|
||||
b = a;
|
||||
a = t;
|
||||
|
||||
end
|
||||
h0 = bitadd(h0, a);
|
||||
h1 = bitadd(h1, b);
|
||||
h2 = bitadd(h2, c);
|
||||
h3 = bitadd(h3, d);
|
||||
h4 = bitadd(h4, e);
|
||||
|
||||
end
|
||||
|
||||
hash = reshape(dec2hex(double([h0 h1 h2 h3 h4]), 8)', [1 40]);
|
||||
|
||||
hash = lower(hash);
|
||||
|
||||
end
|
||||
|
||||
function ret = bitadd(iA, iB)
|
||||
ret = double(iA) + double(iB);
|
||||
ret = bitset(ret, 33, 0);
|
||||
ret = uint32(ret);
|
||||
end
|
||||
|
||||
function ret = bitrotate(iA, places)
|
||||
t = bitshift(iA, places - 32);
|
||||
ret = bitshift(iA, places);
|
||||
ret = bitor(ret, t);
|
||||
end
|
||||
|
||||
% =========================== Base64 Encoder ============================
|
||||
% Thanks to Peter John Acklam
|
||||
%
|
||||
|
||||
function y = base64encode(x, eol)
|
||||
%BASE64ENCODE Perform base64 encoding on a string.
|
||||
%
|
||||
% BASE64ENCODE(STR, EOL) encode the given string STR. EOL is the line ending
|
||||
% sequence to use; it is optional and defaults to '\n' (ASCII decimal 10).
|
||||
% The returned encoded string is broken into lines of no more than 76
|
||||
% characters each, and each line will end with EOL unless it is empty. Let
|
||||
% EOL be empty if you do not want the encoded string broken into lines.
|
||||
%
|
||||
% STR and EOL don't have to be strings (i.e., char arrays). The only
|
||||
% requirement is that they are vectors containing values in the range 0-255.
|
||||
%
|
||||
% This function may be used to encode strings into the Base64 encoding
|
||||
% specified in RFC 2045 - MIME (Multipurpose Internet Mail Extensions). The
|
||||
% Base64 encoding is designed to represent arbitrary sequences of octets in a
|
||||
% form that need not be humanly readable. A 65-character subset
|
||||
% ([A-Za-z0-9+/=]) of US-ASCII is used, enabling 6 bits to be represented per
|
||||
% printable character.
|
||||
%
|
||||
% Examples
|
||||
% --------
|
||||
%
|
||||
% If you want to encode a large file, you should encode it in chunks that are
|
||||
% a multiple of 57 bytes. This ensures that the base64 lines line up and
|
||||
% that you do not end up with padding in the middle. 57 bytes of data fills
|
||||
% one complete base64 line (76 == 57*4/3):
|
||||
%
|
||||
% If ifid and ofid are two file identifiers opened for reading and writing,
|
||||
% respectively, then you can base64 encode the data with
|
||||
%
|
||||
% while ~feof(ifid)
|
||||
% fwrite(ofid, base64encode(fread(ifid, 60*57)));
|
||||
% end
|
||||
%
|
||||
% or, if you have enough memory,
|
||||
%
|
||||
% fwrite(ofid, base64encode(fread(ifid)));
|
||||
%
|
||||
% See also BASE64DECODE.
|
||||
|
||||
% Author: Peter John Acklam
|
||||
% Time-stamp: 2004-02-03 21:36:56 +0100
|
||||
% E-mail: pjacklam@online.no
|
||||
% URL: http://home.online.no/~pjacklam
|
||||
|
||||
if isnumeric(x)
|
||||
x = num2str(x);
|
||||
end
|
||||
|
||||
% make sure we have the EOL value
|
||||
if nargin < 2
|
||||
eol = sprintf('\n');
|
||||
else
|
||||
if sum(size(eol) > 1) > 1
|
||||
error('EOL must be a vector.');
|
||||
end
|
||||
if any(eol(:) > 255)
|
||||
error('EOL can not contain values larger than 255.');
|
||||
end
|
||||
end
|
||||
|
||||
if sum(size(x) > 1) > 1
|
||||
error('STR must be a vector.');
|
||||
end
|
||||
|
||||
x = uint8(x);
|
||||
eol = uint8(eol);
|
||||
|
||||
ndbytes = length(x); % number of decoded bytes
|
||||
nchunks = ceil(ndbytes / 3); % number of chunks/groups
|
||||
nebytes = 4 * nchunks; % number of encoded bytes
|
||||
|
||||
% add padding if necessary, to make the length of x a multiple of 3
|
||||
if rem(ndbytes, 3)
|
||||
x(end+1 : 3*nchunks) = 0;
|
||||
end
|
||||
|
||||
x = reshape(x, [3, nchunks]); % reshape the data
|
||||
y = repmat(uint8(0), 4, nchunks); % for the encoded data
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% Split up every 3 bytes into 4 pieces
|
||||
%
|
||||
% aaaaaabb bbbbcccc ccdddddd
|
||||
%
|
||||
% to form
|
||||
%
|
||||
% 00aaaaaa 00bbbbbb 00cccccc 00dddddd
|
||||
%
|
||||
y(1,:) = bitshift(x(1,:), -2); % 6 highest bits of x(1,:)
|
||||
|
||||
y(2,:) = bitshift(bitand(x(1,:), 3), 4); % 2 lowest bits of x(1,:)
|
||||
y(2,:) = bitor(y(2,:), bitshift(x(2,:), -4)); % 4 highest bits of x(2,:)
|
||||
|
||||
y(3,:) = bitshift(bitand(x(2,:), 15), 2); % 4 lowest bits of x(2,:)
|
||||
y(3,:) = bitor(y(3,:), bitshift(x(3,:), -6)); % 2 highest bits of x(3,:)
|
||||
|
||||
y(4,:) = bitand(x(3,:), 63); % 6 lowest bits of x(3,:)
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% Now perform the following mapping
|
||||
%
|
||||
% 0 - 25 -> A-Z
|
||||
% 26 - 51 -> a-z
|
||||
% 52 - 61 -> 0-9
|
||||
% 62 -> +
|
||||
% 63 -> /
|
||||
%
|
||||
% We could use a mapping vector like
|
||||
%
|
||||
% ['A':'Z', 'a':'z', '0':'9', '+/']
|
||||
%
|
||||
% but that would require an index vector of class double.
|
||||
%
|
||||
z = repmat(uint8(0), size(y));
|
||||
i = y <= 25; z(i) = 'A' + double(y(i));
|
||||
i = 26 <= y & y <= 51; z(i) = 'a' - 26 + double(y(i));
|
||||
i = 52 <= y & y <= 61; z(i) = '0' - 52 + double(y(i));
|
||||
i = y == 62; z(i) = '+';
|
||||
i = y == 63; z(i) = '/';
|
||||
y = z;
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% Add padding if necessary.
|
||||
%
|
||||
npbytes = 3 * nchunks - ndbytes; % number of padding bytes
|
||||
if npbytes
|
||||
y(end-npbytes+1 : end) = '='; % '=' is used for padding
|
||||
end
|
||||
|
||||
if isempty(eol)
|
||||
|
||||
% reshape to a row vector
|
||||
y = reshape(y, [1, nebytes]);
|
||||
|
||||
else
|
||||
|
||||
nlines = ceil(nebytes / 76); % number of lines
|
||||
neolbytes = length(eol); % number of bytes in eol string
|
||||
|
||||
% pad data so it becomes a multiple of 76 elements
|
||||
y = [y(:) ; zeros(76 * nlines - numel(y), 1)];
|
||||
y(nebytes + 1 : 76 * nlines) = 0;
|
||||
y = reshape(y, 76, nlines);
|
||||
|
||||
% insert eol strings
|
||||
eol = eol(:);
|
||||
y(end + 1 : end + neolbytes, :) = eol(:, ones(1, nlines));
|
||||
|
||||
% remove padding, but keep the last eol string
|
||||
m = nebytes + neolbytes * (nlines - 1);
|
||||
n = (76+neolbytes)*nlines - neolbytes;
|
||||
y(m+1 : n) = '';
|
||||
|
||||
% extract and reshape to row vector
|
||||
y = reshape(y, 1, m+neolbytes);
|
||||
|
||||
end
|
||||
|
||||
% output is a character array
|
||||
y = char(y);
|
||||
|
||||
end
|
||||
@@ -0,0 +1,20 @@
|
||||
% submitWeb Creates files from your code and output for web submission.
|
||||
%
|
||||
% If the submit function does not work for you, use the web-submission mechanism.
|
||||
% Call this function to produce a file for the part you wish to submit. Then,
|
||||
% submit the file to the class servers using the "Web Submission" button on the
|
||||
% Programming Exercises page on the course website.
|
||||
%
|
||||
% You should call this function without arguments (submitWeb), to receive
|
||||
% an interactive prompt for submission; optionally you can call it with the partID
|
||||
% if you so wish. Make sure your working directory is set to the directory
|
||||
% containing the submitWeb.m file and your assignment files.
|
||||
|
||||
function submitWeb(partId)
|
||||
if ~exist('partId', 'var') || isempty(partId)
|
||||
partId = [];
|
||||
end
|
||||
|
||||
submit(partId, 1);
|
||||
end
|
||||
|
||||
BIN
machine_learning/course1/mlclass-ex3-008/ex3.pdf
Normal file
BIN
machine_learning/course1/mlclass-ex3-008/ex3.pdf
Normal file
Binary file not shown.
@@ -0,0 +1,59 @@
|
||||
function [h, display_array] = displayData(X, example_width)
|
||||
%DISPLAYDATA Display 2D data in a nice grid
|
||||
% [h, display_array] = DISPLAYDATA(X, example_width) displays 2D data
|
||||
% stored in X in a nice grid. It returns the figure handle h and the
|
||||
% displayed array if requested.
|
||||
|
||||
% Set example_width automatically if not passed in
|
||||
if ~exist('example_width', 'var') || isempty(example_width)
|
||||
example_width = round(sqrt(size(X, 2)));
|
||||
end
|
||||
|
||||
% Gray Image
|
||||
colormap(gray);
|
||||
|
||||
% Compute rows, cols
|
||||
[m n] = size(X);
|
||||
example_height = (n / example_width);
|
||||
|
||||
% Compute number of items to display
|
||||
display_rows = floor(sqrt(m));
|
||||
display_cols = ceil(m / display_rows);
|
||||
|
||||
% Between images padding
|
||||
pad = 1;
|
||||
|
||||
% Setup blank display
|
||||
display_array = - ones(pad + display_rows * (example_height + pad), ...
|
||||
pad + display_cols * (example_width + pad));
|
||||
|
||||
% Copy each example into a patch on the display array
|
||||
curr_ex = 1;
|
||||
for j = 1:display_rows
|
||||
for i = 1:display_cols
|
||||
if curr_ex > m,
|
||||
break;
|
||||
end
|
||||
% Copy the patch
|
||||
|
||||
% Get the max value of the patch
|
||||
max_val = max(abs(X(curr_ex, :)));
|
||||
display_array(pad + (j - 1) * (example_height + pad) + (1:example_height), ...
|
||||
pad + (i - 1) * (example_width + pad) + (1:example_width)) = ...
|
||||
reshape(X(curr_ex, :), example_height, example_width) / max_val;
|
||||
curr_ex = curr_ex + 1;
|
||||
end
|
||||
if curr_ex > m,
|
||||
break;
|
||||
end
|
||||
end
|
||||
|
||||
% Display Image
|
||||
h = imagesc(display_array, [-1 1]);
|
||||
|
||||
% Do not show axis
|
||||
axis image off
|
||||
|
||||
drawnow;
|
||||
|
||||
end
|
||||
69
machine_learning/course1/mlclass-ex3-008/mlclass-ex3/ex3.m
Normal file
69
machine_learning/course1/mlclass-ex3-008/mlclass-ex3/ex3.m
Normal file
@@ -0,0 +1,69 @@
|
||||
%% Machine Learning Online Class - Exercise 3 | Part 1: One-vs-all
|
||||
|
||||
% Instructions
|
||||
% ------------
|
||||
%
|
||||
% This file contains code that helps you get started on the
|
||||
% linear exercise. You will need to complete the following functions
|
||||
% in this exericse:
|
||||
%
|
||||
% lrCostFunction.m (logistic regression cost function)
|
||||
% oneVsAll.m
|
||||
% predictOneVsAll.m
|
||||
% predict.m
|
||||
%
|
||||
% For this exercise, you will not need to change any code in this file,
|
||||
% or any other files other than those mentioned above.
|
||||
%
|
||||
|
||||
%% Initialization
|
||||
clear ; close all; clc
|
||||
|
||||
%% Setup the parameters you will use for this part of the exercise
|
||||
input_layer_size = 400; % 20x20 Input Images of Digits
|
||||
num_labels = 10; % 10 labels, from 1 to 10
|
||||
% (note that we have mapped "0" to label 10)
|
||||
|
||||
%% =========== Part 1: Loading and Visualizing Data =============
|
||||
% We start the exercise by first loading and visualizing the dataset.
|
||||
% You will be working with a dataset that contains handwritten digits.
|
||||
%
|
||||
|
||||
% Load Training Data
|
||||
fprintf('Loading and Visualizing Data ...\n')
|
||||
|
||||
load('ex3data1.mat'); % training data stored in arrays X, y
|
||||
m = size(X, 1);
|
||||
|
||||
% Randomly select 100 data points to display
|
||||
rand_indices = randperm(m);
|
||||
sel = X(rand_indices(1:100), :);
|
||||
|
||||
%displayData(sel);
|
||||
|
||||
fprintf('Program paused. Press enter to continue.\n');
|
||||
pause;
|
||||
|
||||
%% ============ Part 2: Vectorize Logistic Regression ============
|
||||
% In this part of the exercise, you will reuse your logistic regression
|
||||
% code from the last exercise. You task here is to make sure that your
|
||||
% regularized logistic regression implementation is vectorized. After
|
||||
% that, you will implement one-vs-all classification for the handwritten
|
||||
% digit dataset.
|
||||
%
|
||||
|
||||
fprintf('\nTraining One-vs-All Logistic Regression...\n')
|
||||
|
||||
lambda = 0.1;
|
||||
[all_theta] = oneVsAll(X, y, num_labels, lambda);
|
||||
|
||||
fprintf('Program paused. Press enter to continue.\n');
|
||||
pause;
|
||||
|
||||
|
||||
%% ================ Part 3: Predict for One-Vs-All ================
|
||||
% After ...
|
||||
pred = predictOneVsAll(all_theta, X);
|
||||
|
||||
fprintf('\nTraining Set Accuracy: %f\n', mean(double(pred == y)) * 100);
|
||||
|
||||
@@ -0,0 +1,88 @@
|
||||
%% Machine Learning Online Class - Exercise 3 | Part 2: Neural Networks
|
||||
|
||||
% Instructions
|
||||
% ------------
|
||||
%
|
||||
% This file contains code that helps you get started on the
|
||||
% linear exercise. You will need to complete the following functions
|
||||
% in this exericse:
|
||||
%
|
||||
% lrCostFunction.m (logistic regression cost function)
|
||||
% oneVsAll.m
|
||||
% predictOneVsAll.m
|
||||
% predict.m
|
||||
%
|
||||
% For this exercise, you will not need to change any code in this file,
|
||||
% or any other files other than those mentioned above.
|
||||
%
|
||||
|
||||
%% Initialization
|
||||
clear ; close all; clc
|
||||
|
||||
%% Setup the parameters you will use for this exercise
|
||||
input_layer_size = 400; % 20x20 Input Images of Digits
|
||||
hidden_layer_size = 25; % 25 hidden units
|
||||
num_labels = 10; % 10 labels, from 1 to 10
|
||||
% (note that we have mapped "0" to label 10)
|
||||
|
||||
%% =========== Part 1: Loading and Visualizing Data =============
|
||||
% We start the exercise by first loading and visualizing the dataset.
|
||||
% You will be working with a dataset that contains handwritten digits.
|
||||
%
|
||||
|
||||
% Load Training Data
|
||||
fprintf('Loading and Visualizing Data ...\n')
|
||||
|
||||
load('ex3data1.mat');
|
||||
m = size(X, 1);
|
||||
|
||||
% Randomly select 100 data points to display
|
||||
sel = randperm(size(X, 1));
|
||||
sel = sel(1:100);
|
||||
|
||||
displayData(X(sel, :));
|
||||
|
||||
fprintf('Program paused. Press enter to continue.\n');
|
||||
pause;
|
||||
|
||||
%% ================ Part 2: Loading Pameters ================
|
||||
% In this part of the exercise, we load some pre-initialized
|
||||
% neural network parameters.
|
||||
|
||||
fprintf('\nLoading Saved Neural Network Parameters ...\n')
|
||||
|
||||
% Load the weights into variables Theta1 and Theta2
|
||||
load('ex3weights.mat');
|
||||
|
||||
%% ================= Part 3: Implement Predict =================
|
||||
% After training the neural network, we would like to use it to predict
|
||||
% the labels. You will now implement the "predict" function to use the
|
||||
% neural network to predict the labels of the training set. This lets
|
||||
% you compute the training set accuracy.
|
||||
|
||||
pred = predict(Theta1, Theta2, X);
|
||||
|
||||
fprintf('\nTraining Set Accuracy: %f\n', mean(double(pred == y)) * 100);
|
||||
|
||||
fprintf('Program paused. Press enter to continue.\n');
|
||||
pause;
|
||||
|
||||
% To give you an idea of the network's output, you can also run
|
||||
% through the examples one at the a time to see what it is predicting.
|
||||
|
||||
% Randomly permute examples
|
||||
rp = randperm(m);
|
||||
|
||||
for i = 1:m
|
||||
% Display
|
||||
fprintf('\nDisplaying Example Image\n');
|
||||
displayData(X(rp(i), :));
|
||||
|
||||
pred = predict(Theta1, Theta2, X(rp(i),:));
|
||||
fprintf('\nNeural Network Prediction: %d (digit %d)\n', pred, mod(pred, 10));
|
||||
|
||||
% Pause
|
||||
fprintf('Program paused. Press enter to continue.\n');
|
||||
pause;
|
||||
end
|
||||
|
||||
Binary file not shown.
Binary file not shown.
175
machine_learning/course1/mlclass-ex3-008/mlclass-ex3/fmincg.m
Normal file
175
machine_learning/course1/mlclass-ex3-008/mlclass-ex3/fmincg.m
Normal file
@@ -0,0 +1,175 @@
|
||||
function [X, fX, i] = fmincg(f, X, options, P1, P2, P3, P4, P5)
|
||||
% Minimize a continuous differentialble multivariate function. Starting point
|
||||
% is given by "X" (D by 1), and the function named in the string "f", must
|
||||
% return a function value and a vector of partial derivatives. The Polack-
|
||||
% Ribiere flavour of conjugate gradients is used to compute search directions,
|
||||
% and a line search using quadratic and cubic polynomial approximations and the
|
||||
% Wolfe-Powell stopping criteria is used together with the slope ratio method
|
||||
% for guessing initial step sizes. Additionally a bunch of checks are made to
|
||||
% make sure that exploration is taking place and that extrapolation will not
|
||||
% be unboundedly large. The "length" gives the length of the run: if it is
|
||||
% positive, it gives the maximum number of line searches, if negative its
|
||||
% absolute gives the maximum allowed number of function evaluations. You can
|
||||
% (optionally) give "length" a second component, which will indicate the
|
||||
% reduction in function value to be expected in the first line-search (defaults
|
||||
% to 1.0). The function returns when either its length is up, or if no further
|
||||
% progress can be made (ie, we are at a minimum, or so close that due to
|
||||
% numerical problems, we cannot get any closer). If the function terminates
|
||||
% within a few iterations, it could be an indication that the function value
|
||||
% and derivatives are not consistent (ie, there may be a bug in the
|
||||
% implementation of your "f" function). The function returns the found
|
||||
% solution "X", a vector of function values "fX" indicating the progress made
|
||||
% and "i" the number of iterations (line searches or function evaluations,
|
||||
% depending on the sign of "length") used.
|
||||
%
|
||||
% Usage: [X, fX, i] = fmincg(f, X, options, P1, P2, P3, P4, P5)
|
||||
%
|
||||
% See also: checkgrad
|
||||
%
|
||||
% Copyright (C) 2001 and 2002 by Carl Edward Rasmussen. Date 2002-02-13
|
||||
%
|
||||
%
|
||||
% (C) Copyright 1999, 2000 & 2001, Carl Edward Rasmussen
|
||||
%
|
||||
% Permission is granted for anyone to copy, use, or modify these
|
||||
% programs and accompanying documents for purposes of research or
|
||||
% education, provided this copyright notice is retained, and note is
|
||||
% made of any changes that have been made.
|
||||
%
|
||||
% These programs and documents are distributed without any warranty,
|
||||
% express or implied. As the programs were written for research
|
||||
% purposes only, they have not been tested to the degree that would be
|
||||
% advisable in any important application. All use of these programs is
|
||||
% entirely at the user's own risk.
|
||||
%
|
||||
% [ml-class] Changes Made:
|
||||
% 1) Function name and argument specifications
|
||||
% 2) Output display
|
||||
%
|
||||
|
||||
% Read options
|
||||
if exist('options', 'var') && ~isempty(options) && isfield(options, 'MaxIter')
|
||||
length = options.MaxIter;
|
||||
else
|
||||
length = 100;
|
||||
end
|
||||
|
||||
|
||||
RHO = 0.01; % a bunch of constants for line searches
|
||||
SIG = 0.5; % RHO and SIG are the constants in the Wolfe-Powell conditions
|
||||
INT = 0.1; % don't reevaluate within 0.1 of the limit of the current bracket
|
||||
EXT = 3.0; % extrapolate maximum 3 times the current bracket
|
||||
MAX = 20; % max 20 function evaluations per line search
|
||||
RATIO = 100; % maximum allowed slope ratio
|
||||
|
||||
argstr = ['feval(f, X']; % compose string used to call function
|
||||
for i = 1:(nargin - 3)
|
||||
argstr = [argstr, ',P', int2str(i)];
|
||||
end
|
||||
argstr = [argstr, ')'];
|
||||
|
||||
if max(size(length)) == 2, red=length(2); length=length(1); else red=1; end
|
||||
S=['Iteration '];
|
||||
|
||||
i = 0; % zero the run length counter
|
||||
ls_failed = 0; % no previous line search has failed
|
||||
fX = [];
|
||||
[f1 df1] = eval(argstr); % get function value and gradient
|
||||
i = i + (length<0); % count epochs?!
|
||||
s = -df1; % search direction is steepest
|
||||
d1 = -s'*s; % this is the slope
|
||||
z1 = red/(1-d1); % initial step is red/(|s|+1)
|
||||
|
||||
while i < abs(length) % while not finished
|
||||
i = i + (length>0); % count iterations?!
|
||||
|
||||
X0 = X; f0 = f1; df0 = df1; % make a copy of current values
|
||||
X = X + z1*s; % begin line search
|
||||
[f2 df2] = eval(argstr);
|
||||
i = i + (length<0); % count epochs?!
|
||||
d2 = df2'*s;
|
||||
f3 = f1; d3 = d1; z3 = -z1; % initialize point 3 equal to point 1
|
||||
if length>0, M = MAX; else M = min(MAX, -length-i); end
|
||||
success = 0; limit = -1; % initialize quanteties
|
||||
while 1
|
||||
while ((f2 > f1+z1*RHO*d1) | (d2 > -SIG*d1)) & (M > 0)
|
||||
limit = z1; % tighten the bracket
|
||||
if f2 > f1
|
||||
z2 = z3 - (0.5*d3*z3*z3)/(d3*z3+f2-f3); % quadratic fit
|
||||
else
|
||||
A = 6*(f2-f3)/z3+3*(d2+d3); % cubic fit
|
||||
B = 3*(f3-f2)-z3*(d3+2*d2);
|
||||
z2 = (sqrt(B*B-A*d2*z3*z3)-B)/A; % numerical error possible - ok!
|
||||
end
|
||||
if isnan(z2) | isinf(z2)
|
||||
z2 = z3/2; % if we had a numerical problem then bisect
|
||||
end
|
||||
z2 = max(min(z2, INT*z3),(1-INT)*z3); % don't accept too close to limits
|
||||
z1 = z1 + z2; % update the step
|
||||
X = X + z2*s;
|
||||
[f2 df2] = eval(argstr);
|
||||
M = M - 1; i = i + (length<0); % count epochs?!
|
||||
d2 = df2'*s;
|
||||
z3 = z3-z2; % z3 is now relative to the location of z2
|
||||
end
|
||||
if f2 > f1+z1*RHO*d1 | d2 > -SIG*d1
|
||||
break; % this is a failure
|
||||
elseif d2 > SIG*d1
|
||||
success = 1; break; % success
|
||||
elseif M == 0
|
||||
break; % failure
|
||||
end
|
||||
A = 6*(f2-f3)/z3+3*(d2+d3); % make cubic extrapolation
|
||||
B = 3*(f3-f2)-z3*(d3+2*d2);
|
||||
z2 = -d2*z3*z3/(B+sqrt(B*B-A*d2*z3*z3)); % num. error possible - ok!
|
||||
if ~isreal(z2) | isnan(z2) | isinf(z2) | z2 < 0 % num prob or wrong sign?
|
||||
if limit < -0.5 % if we have no upper limit
|
||||
z2 = z1 * (EXT-1); % the extrapolate the maximum amount
|
||||
else
|
||||
z2 = (limit-z1)/2; % otherwise bisect
|
||||
end
|
||||
elseif (limit > -0.5) & (z2+z1 > limit) % extraplation beyond max?
|
||||
z2 = (limit-z1)/2; % bisect
|
||||
elseif (limit < -0.5) & (z2+z1 > z1*EXT) % extrapolation beyond limit
|
||||
z2 = z1*(EXT-1.0); % set to extrapolation limit
|
||||
elseif z2 < -z3*INT
|
||||
z2 = -z3*INT;
|
||||
elseif (limit > -0.5) & (z2 < (limit-z1)*(1.0-INT)) % too close to limit?
|
||||
z2 = (limit-z1)*(1.0-INT);
|
||||
end
|
||||
f3 = f2; d3 = d2; z3 = -z2; % set point 3 equal to point 2
|
||||
z1 = z1 + z2; X = X + z2*s; % update current estimates
|
||||
[f2 df2] = eval(argstr);
|
||||
M = M - 1; i = i + (length<0); % count epochs?!
|
||||
d2 = df2'*s;
|
||||
end % end of line search
|
||||
|
||||
if success % if line search succeeded
|
||||
f1 = f2; fX = [fX' f1]';
|
||||
fprintf('%s %4i | Cost: %4.6e\r', S, i, f1);
|
||||
s = (df2'*df2-df1'*df2)/(df1'*df1)*s - df2; % Polack-Ribiere direction
|
||||
tmp = df1; df1 = df2; df2 = tmp; % swap derivatives
|
||||
d2 = df1'*s;
|
||||
if d2 > 0 % new slope must be negative
|
||||
s = -df1; % otherwise use steepest direction
|
||||
d2 = -s'*s;
|
||||
end
|
||||
z1 = z1 * min(RATIO, d1/(d2-realmin)); % slope ratio but max RATIO
|
||||
d1 = d2;
|
||||
ls_failed = 0; % this line search did not fail
|
||||
else
|
||||
X = X0; f1 = f0; df1 = df0; % restore point from before failed line search
|
||||
if ls_failed | i > abs(length) % line search failed twice in a row
|
||||
break; % or we ran out of time, so we give up
|
||||
end
|
||||
tmp = df1; df1 = df2; df2 = tmp; % swap derivatives
|
||||
s = -df1; % try steepest
|
||||
d1 = -s'*s;
|
||||
z1 = 1/(1-d1);
|
||||
ls_failed = 1; % this line search failed
|
||||
end
|
||||
if exist('OCTAVE_VERSION')
|
||||
fflush(stdout);
|
||||
end
|
||||
end
|
||||
fprintf('\n');
|
||||
@@ -0,0 +1,58 @@
|
||||
function [J, grad] = lrCostFunction(theta, X, y, lambda)
|
||||
%LRCOSTFUNCTION Compute cost and gradient for logistic regression with
|
||||
%regularization
|
||||
% J = LRCOSTFUNCTION(theta, X, y, lambda) computes the cost of using
|
||||
% theta as the parameter for regularized logistic regression and the
|
||||
% gradient of the cost w.r.t. to the parameters.
|
||||
|
||||
% Initialize some useful values
|
||||
m = length(y); % number of training examples
|
||||
|
||||
% You need to return the following variables correctly
|
||||
J = 0;
|
||||
grad = zeros(size(theta));
|
||||
|
||||
% ====================== YOUR CODE HERE ======================
|
||||
% Instructions: Compute the cost of a particular choice of theta.
|
||||
% You should set J to the cost.
|
||||
% Compute the partial derivatives and set grad to the partial
|
||||
% derivatives of the cost w.r.t. each parameter in theta
|
||||
%
|
||||
% Hint: The computation of the cost function and gradients can be
|
||||
% efficiently vectorized. For example, consider the computation
|
||||
%
|
||||
% sigmoid(X * theta)
|
||||
%
|
||||
% Each row of the resulting matrix will contain the value of the
|
||||
% prediction for that example. You can make use of this to vectorize
|
||||
% the cost function and gradient computations.
|
||||
%
|
||||
% Hint: When computing the gradient of the regularized cost function,
|
||||
% there're many possible vectorized solutions, but one solution
|
||||
% looks like:
|
||||
% grad = (unregularized gradient for logistic regression)
|
||||
% temp = theta;
|
||||
% temp(1) = 0; % because we don't add anything for j = 0
|
||||
% grad = grad + YOUR_CODE_HERE (using the temp variable)
|
||||
%
|
||||
|
||||
|
||||
h = sigmoid( X*theta );
|
||||
o = ones(size(y));
|
||||
reg = theta;
|
||||
reg(1) = 0;
|
||||
J = sum( y .* log(h) + (o-y) .* log(o-h) ) / (-m) + (lambda/(2*m))*sum(reg.^2);
|
||||
grad = (X'*(h - y)) / m + (lambda/m) * reg;
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
% =============================================================
|
||||
|
||||
grad = grad(:);
|
||||
|
||||
end
|
||||
@@ -0,0 +1,70 @@
|
||||
function [all_theta] = oneVsAll(X, y, num_labels, lambda)
|
||||
%ONEVSALL trains multiple logistic regression classifiers and returns all
|
||||
%the classifiers in a matrix all_theta, where the i-th row of all_theta
|
||||
%corresponds to the classifier for label i
|
||||
% [all_theta] = ONEVSALL(X, y, num_labels, lambda) trains num_labels
|
||||
% logisitc regression classifiers and returns each of these classifiers
|
||||
% in a matrix all_theta, where the i-th row of all_theta corresponds
|
||||
% to the classifier for label i
|
||||
|
||||
% Some useful variables
|
||||
m = size(X, 1);
|
||||
n = size(X, 2);
|
||||
|
||||
% You need to return the following variables correctly
|
||||
all_theta = zeros(num_labels, n + 1);
|
||||
|
||||
% Add ones to the X data matrix
|
||||
X = [ones(m, 1) X];
|
||||
|
||||
% ====================== YOUR CODE HERE ======================
|
||||
% Instructions: You should complete the following code to train num_labels
|
||||
% logistic regression classifiers with regularization
|
||||
% parameter lambda.
|
||||
%
|
||||
% Hint: theta(:) will return a column vector.
|
||||
%
|
||||
% Hint: You can use y == c to obtain a vector of 1's and 0's that tell use
|
||||
% whether the ground truth is true/false for this class.
|
||||
%
|
||||
% Note: For this assignment, we recommend using fmincg to optimize the cost
|
||||
% function. It is okay to use a for-loop (for c = 1:num_labels) to
|
||||
% loop over the different classes.
|
||||
%
|
||||
% fmincg works similarly to fminunc, but is more efficient when we
|
||||
% are dealing with large number of parameters.
|
||||
%
|
||||
% Example Code for fmincg:
|
||||
%
|
||||
% % Set Initial theta
|
||||
% initial_theta = zeros(n + 1, 1);
|
||||
%
|
||||
% % Set options for fminunc
|
||||
% options = optimset('GradObj', 'on', 'MaxIter', 50);
|
||||
%
|
||||
% % Run fmincg to obtain the optimal theta
|
||||
% % This function will return theta and the cost
|
||||
% [theta] = ...
|
||||
% fmincg (@(t)(lrCostFunction(t, X, (y == c), lambda)), ...
|
||||
% initial_theta, options);
|
||||
%
|
||||
|
||||
options = optimset('GradObj', 'on', 'MaxIter', 50);
|
||||
initial_theta = zeros(n + 1, 1);
|
||||
|
||||
for c = 1:num_labels,
|
||||
|
||||
|
||||
theta = fmincg (@(t)(lrCostFunction(t, X, (y == c), lambda)), initial_theta, options);
|
||||
all_theta(c,:) = theta;
|
||||
|
||||
end;
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
% =========================================================================
|
||||
|
||||
|
||||
end
|
||||
@@ -0,0 +1,33 @@
|
||||
function p = predict(Theta1, Theta2, X)
|
||||
%PREDICT Predict the label of an input given a trained neural network
|
||||
% p = PREDICT(Theta1, Theta2, X) outputs the predicted label of X given the
|
||||
% trained weights of a neural network (Theta1, Theta2)
|
||||
|
||||
% Useful values
|
||||
m = size(X, 1);
|
||||
num_labels = size(Theta2, 1);
|
||||
|
||||
% You need to return the following variables correctly
|
||||
p = zeros(size(X, 1), 1);
|
||||
|
||||
% ====================== YOUR CODE HERE ======================
|
||||
% Instructions: Complete the following code to make predictions using
|
||||
% your learned neural network. You should set p to a
|
||||
% vector containing labels between 1 to num_labels.
|
||||
%
|
||||
% Hint: The max function might come in useful. In particular, the max
|
||||
% function can also return the index of the max element, for more
|
||||
% information see 'help max'. If your examples are in rows, then, you
|
||||
% can use max(A, [], 2) to obtain the max for each row.
|
||||
%
|
||||
|
||||
X = [ones(m, 1) X];
|
||||
a2 = [ones(m,1) sigmoid(X*Theta1')];
|
||||
a3 = sigmoid(a2*Theta2');
|
||||
|
||||
[m, p] = max( a3, [], 2 );
|
||||
|
||||
% =========================================================================
|
||||
|
||||
|
||||
end
|
||||
@@ -0,0 +1,39 @@
|
||||
function p = predictOneVsAll(all_theta, X)
|
||||
%PREDICT Predict the label for a trained one-vs-all classifier. The labels
|
||||
%are in the range 1..K, where K = size(all_theta, 1).
|
||||
% p = PREDICTONEVSALL(all_theta, X) will return a vector of predictions
|
||||
% for each example in the matrix X. Note that X contains the examples in
|
||||
% rows. all_theta is a matrix where the i-th row is a trained logistic
|
||||
% regression theta vector for the i-th class. You should set p to a vector
|
||||
% of values from 1..K (e.g., p = [1; 3; 1; 2] predicts classes 1, 3, 1, 2
|
||||
% for 4 examples)
|
||||
|
||||
m = size(X, 1);
|
||||
num_labels = size(all_theta, 1);
|
||||
|
||||
% You need to return the following variables correctly
|
||||
p = zeros(size(X, 1), 1);
|
||||
|
||||
% Add ones to the X data matrix
|
||||
X = [ones(m, 1) X];
|
||||
|
||||
% ====================== YOUR CODE HERE ======================
|
||||
% Instructions: Complete the following code to make predictions using
|
||||
% your learned logistic regression parameters (one-vs-all).
|
||||
% You should set p to a vector of predictions (from 1 to
|
||||
% num_labels).
|
||||
%
|
||||
% Hint: This code can be done all vectorized using the max function.
|
||||
% In particular, the max function can also return the index of the
|
||||
% max element, for more information see 'help max'. If your examples
|
||||
% are in rows, then, you can use max(A, [], 2) to obtain the max
|
||||
% for each row.
|
||||
%
|
||||
|
||||
[m, p] = max( sigmoid( all_theta * X' ) );
|
||||
p = p';
|
||||
|
||||
% =========================================================================
|
||||
|
||||
|
||||
end
|
||||
@@ -0,0 +1,6 @@
|
||||
function g = sigmoid(z)
|
||||
%SIGMOID Compute sigmoid functoon
|
||||
% J = SIGMOID(z) computes the sigmoid of z.
|
||||
|
||||
g = 1.0 ./ (1.0 + exp(-z));
|
||||
end
|
||||
574
machine_learning/course1/mlclass-ex3-008/mlclass-ex3/submit.m
Normal file
574
machine_learning/course1/mlclass-ex3-008/mlclass-ex3/submit.m
Normal file
@@ -0,0 +1,574 @@
|
||||
function submit(partId, webSubmit)
|
||||
%SUBMIT Submit your code and output to the ml-class servers
|
||||
% SUBMIT() will connect to the ml-class server and submit your solution
|
||||
|
||||
fprintf('==\n== [ml-class] Submitting Solutions | Programming Exercise %s\n==\n', ...
|
||||
homework_id());
|
||||
if ~exist('partId', 'var') || isempty(partId)
|
||||
partId = promptPart();
|
||||
end
|
||||
|
||||
if ~exist('webSubmit', 'var') || isempty(webSubmit)
|
||||
webSubmit = 0; % submit directly by default
|
||||
end
|
||||
|
||||
% Check valid partId
|
||||
partNames = validParts();
|
||||
if ~isValidPartId(partId)
|
||||
fprintf('!! Invalid homework part selected.\n');
|
||||
fprintf('!! Expected an integer from 1 to %d.\n', numel(partNames) + 1);
|
||||
fprintf('!! Submission Cancelled\n');
|
||||
return
|
||||
end
|
||||
|
||||
if ~exist('ml_login_data.mat','file')
|
||||
[login password] = loginPrompt();
|
||||
save('ml_login_data.mat','login','password');
|
||||
else
|
||||
load('ml_login_data.mat');
|
||||
[login password] = quickLogin(login, password);
|
||||
save('ml_login_data.mat','login','password');
|
||||
end
|
||||
|
||||
if isempty(login)
|
||||
fprintf('!! Submission Cancelled\n');
|
||||
return
|
||||
end
|
||||
|
||||
fprintf('\n== Connecting to ml-class ... ');
|
||||
if exist('OCTAVE_VERSION')
|
||||
fflush(stdout);
|
||||
end
|
||||
|
||||
% Setup submit list
|
||||
if partId == numel(partNames) + 1
|
||||
submitParts = 1:numel(partNames);
|
||||
else
|
||||
submitParts = [partId];
|
||||
end
|
||||
|
||||
for s = 1:numel(submitParts)
|
||||
thisPartId = submitParts(s);
|
||||
if (~webSubmit) % submit directly to server
|
||||
[login, ch, signature, auxstring] = getChallenge(login, thisPartId);
|
||||
if isempty(login) || isempty(ch) || isempty(signature)
|
||||
% Some error occured, error string in first return element.
|
||||
fprintf('\n!! Error: %s\n\n', login);
|
||||
return
|
||||
end
|
||||
|
||||
% Attempt Submission with Challenge
|
||||
ch_resp = challengeResponse(login, password, ch);
|
||||
|
||||
[result, str] = submitSolution(login, ch_resp, thisPartId, ...
|
||||
output(thisPartId, auxstring), source(thisPartId), signature);
|
||||
|
||||
partName = partNames{thisPartId};
|
||||
|
||||
fprintf('\n== [ml-class] Submitted Assignment %s - Part %d - %s\n', ...
|
||||
homework_id(), thisPartId, partName);
|
||||
fprintf('== %s\n', strtrim(str));
|
||||
|
||||
if exist('OCTAVE_VERSION')
|
||||
fflush(stdout);
|
||||
end
|
||||
else
|
||||
[result] = submitSolutionWeb(login, thisPartId, output(thisPartId), ...
|
||||
source(thisPartId));
|
||||
result = base64encode(result);
|
||||
|
||||
fprintf('\nSave as submission file [submit_ex%s_part%d.txt (enter to accept default)]:', ...
|
||||
homework_id(), thisPartId);
|
||||
saveAsFile = input('', 's');
|
||||
if (isempty(saveAsFile))
|
||||
saveAsFile = sprintf('submit_ex%s_part%d.txt', homework_id(), thisPartId);
|
||||
end
|
||||
|
||||
fid = fopen(saveAsFile, 'w');
|
||||
if (fid)
|
||||
fwrite(fid, result);
|
||||
fclose(fid);
|
||||
fprintf('\nSaved your solutions to %s.\n\n', saveAsFile);
|
||||
fprintf(['You can now submit your solutions through the web \n' ...
|
||||
'form in the programming exercises. Select the corresponding \n' ...
|
||||
'programming exercise to access the form.\n']);
|
||||
|
||||
else
|
||||
fprintf('Unable to save to %s\n\n', saveAsFile);
|
||||
fprintf(['You can create a submission file by saving the \n' ...
|
||||
'following text in a file: (press enter to continue)\n\n']);
|
||||
pause;
|
||||
fprintf(result);
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
% ================== CONFIGURABLES FOR EACH HOMEWORK ==================
|
||||
|
||||
function id = homework_id()
|
||||
id = '3';
|
||||
end
|
||||
|
||||
function [partNames] = validParts()
|
||||
partNames = { 'Vectorized Logistic Regression ', ...
|
||||
'One-vs-all classifier training', ...
|
||||
'One-vs-all classifier prediction', ...
|
||||
'Neural network prediction function' ...
|
||||
};
|
||||
end
|
||||
|
||||
function srcs = sources()
|
||||
% Separated by part
|
||||
srcs = { { 'lrCostFunction.m' }, ...
|
||||
{ 'oneVsAll.m' }, ...
|
||||
{ 'predictOneVsAll.m' }, ...
|
||||
{ 'predict.m' } };
|
||||
end
|
||||
|
||||
function out = output(partId, auxdata)
|
||||
% Random Test Cases
|
||||
X = [ones(20,1) (exp(1) * sin(1:1:20))' (exp(0.5) * cos(1:1:20))'];
|
||||
y = sin(X(:,1) + X(:,2)) > 0;
|
||||
Xm = [ -1 -1 ; -1 -2 ; -2 -1 ; -2 -2 ; ...
|
||||
1 1 ; 1 2 ; 2 1 ; 2 2 ; ...
|
||||
-1 1 ; -1 2 ; -2 1 ; -2 2 ; ...
|
||||
1 -1 ; 1 -2 ; -2 -1 ; -2 -2 ];
|
||||
ym = [ 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 ]';
|
||||
t1 = sin(reshape(1:2:24, 4, 3));
|
||||
t2 = cos(reshape(1:2:40, 4, 5));
|
||||
|
||||
if partId == 1
|
||||
[J, grad] = lrCostFunction([0.25 0.5 -0.5]', X, y, 0.1);
|
||||
out = sprintf('%0.5f ', J);
|
||||
out = [out sprintf('%0.5f ', grad)];
|
||||
elseif partId == 2
|
||||
out = sprintf('%0.5f ', oneVsAll(Xm, ym, 4, 0.1));
|
||||
elseif partId == 3
|
||||
out = sprintf('%0.5f ', predictOneVsAll(t1, Xm));
|
||||
elseif partId == 4
|
||||
out = sprintf('%0.5f ', predict(t1, t2, Xm));
|
||||
end
|
||||
end
|
||||
|
||||
|
||||
% ====================== SERVER CONFIGURATION ===========================
|
||||
|
||||
% ***************** REMOVE -staging WHEN YOU DEPLOY *********************
|
||||
function url = site_url()
|
||||
url = 'http://class.coursera.org/ml-008';
|
||||
end
|
||||
|
||||
function url = challenge_url()
|
||||
url = [site_url() '/assignment/challenge'];
|
||||
end
|
||||
|
||||
function url = submit_url()
|
||||
url = [site_url() '/assignment/submit'];
|
||||
end
|
||||
|
||||
% ========================= CHALLENGE HELPERS =========================
|
||||
|
||||
function src = source(partId)
|
||||
src = '';
|
||||
src_files = sources();
|
||||
if partId <= numel(src_files)
|
||||
flist = src_files{partId};
|
||||
for i = 1:numel(flist)
|
||||
fid = fopen(flist{i});
|
||||
if (fid == -1)
|
||||
error('Error opening %s (is it missing?)', flist{i});
|
||||
end
|
||||
line = fgets(fid);
|
||||
while ischar(line)
|
||||
src = [src line];
|
||||
line = fgets(fid);
|
||||
end
|
||||
fclose(fid);
|
||||
src = [src '||||||||'];
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
function ret = isValidPartId(partId)
|
||||
partNames = validParts();
|
||||
ret = (~isempty(partId)) && (partId >= 1) && (partId <= numel(partNames) + 1);
|
||||
end
|
||||
|
||||
function partId = promptPart()
|
||||
fprintf('== Select which part(s) to submit:\n');
|
||||
partNames = validParts();
|
||||
srcFiles = sources();
|
||||
for i = 1:numel(partNames)
|
||||
fprintf('== %d) %s [', i, partNames{i});
|
||||
fprintf(' %s ', srcFiles{i}{:});
|
||||
fprintf(']\n');
|
||||
end
|
||||
fprintf('== %d) All of the above \n==\nEnter your choice [1-%d]: ', ...
|
||||
numel(partNames) + 1, numel(partNames) + 1);
|
||||
selPart = input('', 's');
|
||||
partId = str2num(selPart);
|
||||
if ~isValidPartId(partId)
|
||||
partId = -1;
|
||||
end
|
||||
end
|
||||
|
||||
function [email,ch,signature,auxstring] = getChallenge(email, part)
|
||||
str = urlread(challenge_url(), 'post', {'email_address', email, 'assignment_part_sid', [homework_id() '-' num2str(part)], 'response_encoding', 'delim'});
|
||||
|
||||
str = strtrim(str);
|
||||
r = struct;
|
||||
while(numel(str) > 0)
|
||||
[f, str] = strtok (str, '|');
|
||||
[v, str] = strtok (str, '|');
|
||||
r = setfield(r, f, v);
|
||||
end
|
||||
|
||||
email = getfield(r, 'email_address');
|
||||
ch = getfield(r, 'challenge_key');
|
||||
signature = getfield(r, 'state');
|
||||
auxstring = getfield(r, 'challenge_aux_data');
|
||||
end
|
||||
|
||||
function [result, str] = submitSolutionWeb(email, part, output, source)
|
||||
|
||||
result = ['{"assignment_part_sid":"' base64encode([homework_id() '-' num2str(part)], '') '",' ...
|
||||
'"email_address":"' base64encode(email, '') '",' ...
|
||||
'"submission":"' base64encode(output, '') '",' ...
|
||||
'"submission_aux":"' base64encode(source, '') '"' ...
|
||||
'}'];
|
||||
str = 'Web-submission';
|
||||
end
|
||||
|
||||
function [result, str] = submitSolution(email, ch_resp, part, output, ...
|
||||
source, signature)
|
||||
|
||||
params = {'assignment_part_sid', [homework_id() '-' num2str(part)], ...
|
||||
'email_address', email, ...
|
||||
'submission', base64encode(output, ''), ...
|
||||
'submission_aux', base64encode(source, ''), ...
|
||||
'challenge_response', ch_resp, ...
|
||||
'state', signature};
|
||||
|
||||
str = urlread(submit_url(), 'post', params);
|
||||
|
||||
% Parse str to read for success / failure
|
||||
result = 0;
|
||||
|
||||
end
|
||||
|
||||
% =========================== LOGIN HELPERS ===========================
|
||||
|
||||
function [login password] = loginPrompt()
|
||||
% Prompt for password
|
||||
[login password] = basicPrompt();
|
||||
|
||||
if isempty(login) || isempty(password)
|
||||
login = []; password = [];
|
||||
end
|
||||
end
|
||||
|
||||
|
||||
function [login password] = basicPrompt()
|
||||
login = input('Login (Email address): ', 's');
|
||||
password = input('Password: ', 's');
|
||||
end
|
||||
|
||||
function [login password] = quickLogin(login,password)
|
||||
disp(['You are currently logged in as ' login '.']);
|
||||
cont_token = input('Is this you? (y/n - type n to reenter password)','s');
|
||||
if(isempty(cont_token) || cont_token(1)=='Y'||cont_token(1)=='y')
|
||||
return;
|
||||
else
|
||||
[login password] = loginPrompt();
|
||||
end
|
||||
end
|
||||
|
||||
function [str] = challengeResponse(email, passwd, challenge)
|
||||
str = sha1([challenge passwd]);
|
||||
end
|
||||
|
||||
% =============================== SHA-1 ================================
|
||||
|
||||
function hash = sha1(str)
|
||||
|
||||
% Initialize variables
|
||||
h0 = uint32(1732584193);
|
||||
h1 = uint32(4023233417);
|
||||
h2 = uint32(2562383102);
|
||||
h3 = uint32(271733878);
|
||||
h4 = uint32(3285377520);
|
||||
|
||||
% Convert to word array
|
||||
strlen = numel(str);
|
||||
|
||||
% Break string into chars and append the bit 1 to the message
|
||||
mC = [double(str) 128];
|
||||
mC = [mC zeros(1, 4-mod(numel(mC), 4), 'uint8')];
|
||||
|
||||
numB = strlen * 8;
|
||||
if exist('idivide')
|
||||
numC = idivide(uint32(numB + 65), 512, 'ceil');
|
||||
else
|
||||
numC = ceil(double(numB + 65)/512);
|
||||
end
|
||||
numW = numC * 16;
|
||||
mW = zeros(numW, 1, 'uint32');
|
||||
|
||||
idx = 1;
|
||||
for i = 1:4:strlen + 1
|
||||
mW(idx) = bitor(bitor(bitor( ...
|
||||
bitshift(uint32(mC(i)), 24), ...
|
||||
bitshift(uint32(mC(i+1)), 16)), ...
|
||||
bitshift(uint32(mC(i+2)), 8)), ...
|
||||
uint32(mC(i+3)));
|
||||
idx = idx + 1;
|
||||
end
|
||||
|
||||
% Append length of message
|
||||
mW(numW - 1) = uint32(bitshift(uint64(numB), -32));
|
||||
mW(numW) = uint32(bitshift(bitshift(uint64(numB), 32), -32));
|
||||
|
||||
% Process the message in successive 512-bit chs
|
||||
for cId = 1 : double(numC)
|
||||
cSt = (cId - 1) * 16 + 1;
|
||||
cEnd = cId * 16;
|
||||
ch = mW(cSt : cEnd);
|
||||
|
||||
% Extend the sixteen 32-bit words into eighty 32-bit words
|
||||
for j = 17 : 80
|
||||
ch(j) = ch(j - 3);
|
||||
ch(j) = bitxor(ch(j), ch(j - 8));
|
||||
ch(j) = bitxor(ch(j), ch(j - 14));
|
||||
ch(j) = bitxor(ch(j), ch(j - 16));
|
||||
ch(j) = bitrotate(ch(j), 1);
|
||||
end
|
||||
|
||||
% Initialize hash value for this ch
|
||||
a = h0;
|
||||
b = h1;
|
||||
c = h2;
|
||||
d = h3;
|
||||
e = h4;
|
||||
|
||||
% Main loop
|
||||
for i = 1 : 80
|
||||
if(i >= 1 && i <= 20)
|
||||
f = bitor(bitand(b, c), bitand(bitcmp(b), d));
|
||||
k = uint32(1518500249);
|
||||
elseif(i >= 21 && i <= 40)
|
||||
f = bitxor(bitxor(b, c), d);
|
||||
k = uint32(1859775393);
|
||||
elseif(i >= 41 && i <= 60)
|
||||
f = bitor(bitor(bitand(b, c), bitand(b, d)), bitand(c, d));
|
||||
k = uint32(2400959708);
|
||||
elseif(i >= 61 && i <= 80)
|
||||
f = bitxor(bitxor(b, c), d);
|
||||
k = uint32(3395469782);
|
||||
end
|
||||
|
||||
t = bitrotate(a, 5);
|
||||
t = bitadd(t, f);
|
||||
t = bitadd(t, e);
|
||||
t = bitadd(t, k);
|
||||
t = bitadd(t, ch(i));
|
||||
e = d;
|
||||
d = c;
|
||||
c = bitrotate(b, 30);
|
||||
b = a;
|
||||
a = t;
|
||||
|
||||
end
|
||||
h0 = bitadd(h0, a);
|
||||
h1 = bitadd(h1, b);
|
||||
h2 = bitadd(h2, c);
|
||||
h3 = bitadd(h3, d);
|
||||
h4 = bitadd(h4, e);
|
||||
|
||||
end
|
||||
|
||||
hash = reshape(dec2hex(double([h0 h1 h2 h3 h4]), 8)', [1 40]);
|
||||
|
||||
hash = lower(hash);
|
||||
|
||||
end
|
||||
|
||||
function ret = bitadd(iA, iB)
|
||||
ret = double(iA) + double(iB);
|
||||
ret = bitset(ret, 33, 0);
|
||||
ret = uint32(ret);
|
||||
end
|
||||
|
||||
function ret = bitrotate(iA, places)
|
||||
t = bitshift(iA, places - 32);
|
||||
ret = bitshift(iA, places);
|
||||
ret = bitor(ret, t);
|
||||
end
|
||||
|
||||
% =========================== Base64 Encoder ============================
|
||||
% Thanks to Peter John Acklam
|
||||
%
|
||||
|
||||
function y = base64encode(x, eol)
|
||||
%BASE64ENCODE Perform base64 encoding on a string.
|
||||
%
|
||||
% BASE64ENCODE(STR, EOL) encode the given string STR. EOL is the line ending
|
||||
% sequence to use; it is optional and defaults to '\n' (ASCII decimal 10).
|
||||
% The returned encoded string is broken into lines of no more than 76
|
||||
% characters each, and each line will end with EOL unless it is empty. Let
|
||||
% EOL be empty if you do not want the encoded string broken into lines.
|
||||
%
|
||||
% STR and EOL don't have to be strings (i.e., char arrays). The only
|
||||
% requirement is that they are vectors containing values in the range 0-255.
|
||||
%
|
||||
% This function may be used to encode strings into the Base64 encoding
|
||||
% specified in RFC 2045 - MIME (Multipurpose Internet Mail Extensions). The
|
||||
% Base64 encoding is designed to represent arbitrary sequences of octets in a
|
||||
% form that need not be humanly readable. A 65-character subset
|
||||
% ([A-Za-z0-9+/=]) of US-ASCII is used, enabling 6 bits to be represented per
|
||||
% printable character.
|
||||
%
|
||||
% Examples
|
||||
% --------
|
||||
%
|
||||
% If you want to encode a large file, you should encode it in chunks that are
|
||||
% a multiple of 57 bytes. This ensures that the base64 lines line up and
|
||||
% that you do not end up with padding in the middle. 57 bytes of data fills
|
||||
% one complete base64 line (76 == 57*4/3):
|
||||
%
|
||||
% If ifid and ofid are two file identifiers opened for reading and writing,
|
||||
% respectively, then you can base64 encode the data with
|
||||
%
|
||||
% while ~feof(ifid)
|
||||
% fwrite(ofid, base64encode(fread(ifid, 60*57)));
|
||||
% end
|
||||
%
|
||||
% or, if you have enough memory,
|
||||
%
|
||||
% fwrite(ofid, base64encode(fread(ifid)));
|
||||
%
|
||||
% See also BASE64DECODE.
|
||||
|
||||
% Author: Peter John Acklam
|
||||
% Time-stamp: 2004-02-03 21:36:56 +0100
|
||||
% E-mail: pjacklam@online.no
|
||||
% URL: http://home.online.no/~pjacklam
|
||||
|
||||
if isnumeric(x)
|
||||
x = num2str(x);
|
||||
end
|
||||
|
||||
% make sure we have the EOL value
|
||||
if nargin < 2
|
||||
eol = sprintf('\n');
|
||||
else
|
||||
if sum(size(eol) > 1) > 1
|
||||
error('EOL must be a vector.');
|
||||
end
|
||||
if any(eol(:) > 255)
|
||||
error('EOL can not contain values larger than 255.');
|
||||
end
|
||||
end
|
||||
|
||||
if sum(size(x) > 1) > 1
|
||||
error('STR must be a vector.');
|
||||
end
|
||||
|
||||
x = uint8(x);
|
||||
eol = uint8(eol);
|
||||
|
||||
ndbytes = length(x); % number of decoded bytes
|
||||
nchunks = ceil(ndbytes / 3); % number of chunks/groups
|
||||
nebytes = 4 * nchunks; % number of encoded bytes
|
||||
|
||||
% add padding if necessary, to make the length of x a multiple of 3
|
||||
if rem(ndbytes, 3)
|
||||
x(end+1 : 3*nchunks) = 0;
|
||||
end
|
||||
|
||||
x = reshape(x, [3, nchunks]); % reshape the data
|
||||
y = repmat(uint8(0), 4, nchunks); % for the encoded data
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% Split up every 3 bytes into 4 pieces
|
||||
%
|
||||
% aaaaaabb bbbbcccc ccdddddd
|
||||
%
|
||||
% to form
|
||||
%
|
||||
% 00aaaaaa 00bbbbbb 00cccccc 00dddddd
|
||||
%
|
||||
y(1,:) = bitshift(x(1,:), -2); % 6 highest bits of x(1,:)
|
||||
|
||||
y(2,:) = bitshift(bitand(x(1,:), 3), 4); % 2 lowest bits of x(1,:)
|
||||
y(2,:) = bitor(y(2,:), bitshift(x(2,:), -4)); % 4 highest bits of x(2,:)
|
||||
|
||||
y(3,:) = bitshift(bitand(x(2,:), 15), 2); % 4 lowest bits of x(2,:)
|
||||
y(3,:) = bitor(y(3,:), bitshift(x(3,:), -6)); % 2 highest bits of x(3,:)
|
||||
|
||||
y(4,:) = bitand(x(3,:), 63); % 6 lowest bits of x(3,:)
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% Now perform the following mapping
|
||||
%
|
||||
% 0 - 25 -> A-Z
|
||||
% 26 - 51 -> a-z
|
||||
% 52 - 61 -> 0-9
|
||||
% 62 -> +
|
||||
% 63 -> /
|
||||
%
|
||||
% We could use a mapping vector like
|
||||
%
|
||||
% ['A':'Z', 'a':'z', '0':'9', '+/']
|
||||
%
|
||||
% but that would require an index vector of class double.
|
||||
%
|
||||
z = repmat(uint8(0), size(y));
|
||||
i = y <= 25; z(i) = 'A' + double(y(i));
|
||||
i = 26 <= y & y <= 51; z(i) = 'a' - 26 + double(y(i));
|
||||
i = 52 <= y & y <= 61; z(i) = '0' - 52 + double(y(i));
|
||||
i = y == 62; z(i) = '+';
|
||||
i = y == 63; z(i) = '/';
|
||||
y = z;
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% Add padding if necessary.
|
||||
%
|
||||
npbytes = 3 * nchunks - ndbytes; % number of padding bytes
|
||||
if npbytes
|
||||
y(end-npbytes+1 : end) = '='; % '=' is used for padding
|
||||
end
|
||||
|
||||
if isempty(eol)
|
||||
|
||||
% reshape to a row vector
|
||||
y = reshape(y, [1, nebytes]);
|
||||
|
||||
else
|
||||
|
||||
nlines = ceil(nebytes / 76); % number of lines
|
||||
neolbytes = length(eol); % number of bytes in eol string
|
||||
|
||||
% pad data so it becomes a multiple of 76 elements
|
||||
y = [y(:) ; zeros(76 * nlines - numel(y), 1)];
|
||||
y(nebytes + 1 : 76 * nlines) = 0;
|
||||
y = reshape(y, 76, nlines);
|
||||
|
||||
% insert eol strings
|
||||
eol = eol(:);
|
||||
y(end + 1 : end + neolbytes, :) = eol(:, ones(1, nlines));
|
||||
|
||||
% remove padding, but keep the last eol string
|
||||
m = nebytes + neolbytes * (nlines - 1);
|
||||
n = (76+neolbytes)*nlines - neolbytes;
|
||||
y(m+1 : n) = '';
|
||||
|
||||
% extract and reshape to row vector
|
||||
y = reshape(y, 1, m+neolbytes);
|
||||
|
||||
end
|
||||
|
||||
% output is a character array
|
||||
y = char(y);
|
||||
|
||||
end
|
||||
@@ -0,0 +1,20 @@
|
||||
% submitWeb Creates files from your code and output for web submission.
|
||||
%
|
||||
% If the submit function does not work for you, use the web-submission mechanism.
|
||||
% Call this function to produce a file for the part you wish to submit. Then,
|
||||
% submit the file to the class servers using the "Web Submission" button on the
|
||||
% Programming Exercises page on the course website.
|
||||
%
|
||||
% You should call this function without arguments (submitWeb), to receive
|
||||
% an interactive prompt for submission; optionally you can call it with the partID
|
||||
% if you so wish. Make sure your working directory is set to the directory
|
||||
% containing the submitWeb.m file and your assignment files.
|
||||
|
||||
function submitWeb(partId)
|
||||
if ~exist('partId', 'var') || isempty(partId)
|
||||
partId = [];
|
||||
end
|
||||
|
||||
submit(partId, 1);
|
||||
end
|
||||
|
||||
BIN
machine_learning/course1/mlclass-ex4-008/ex4.pdf
Normal file
BIN
machine_learning/course1/mlclass-ex4-008/ex4.pdf
Normal file
Binary file not shown.
@@ -0,0 +1,52 @@
|
||||
function checkNNGradients(lambda)
|
||||
%CHECKNNGRADIENTS Creates a small neural network to check the
|
||||
%backpropagation gradients
|
||||
% CHECKNNGRADIENTS(lambda) Creates a small neural network to check the
|
||||
% backpropagation gradients, it will output the analytical gradients
|
||||
% produced by your backprop code and the numerical gradients (computed
|
||||
% using computeNumericalGradient). These two gradient computations should
|
||||
% result in very similar values.
|
||||
%
|
||||
|
||||
if ~exist('lambda', 'var') || isempty(lambda)
|
||||
lambda = 0;
|
||||
end
|
||||
|
||||
input_layer_size = 3;
|
||||
hidden_layer_size = 5;
|
||||
num_labels = 3;
|
||||
m = 5;
|
||||
|
||||
% We generate some 'random' test data
|
||||
Theta1 = debugInitializeWeights(hidden_layer_size, input_layer_size);
|
||||
Theta2 = debugInitializeWeights(num_labels, hidden_layer_size);
|
||||
% Reusing debugInitializeWeights to generate X
|
||||
X = debugInitializeWeights(m, input_layer_size - 1);
|
||||
y = 1 + mod(1:m, num_labels)';
|
||||
|
||||
% Unroll parameters
|
||||
nn_params = [Theta1(:) ; Theta2(:)];
|
||||
|
||||
% Short hand for cost function
|
||||
costFunc = @(p) nnCostFunction(p, input_layer_size, hidden_layer_size, ...
|
||||
num_labels, X, y, lambda);
|
||||
|
||||
[cost, grad] = costFunc(nn_params);
|
||||
numgrad = computeNumericalGradient(costFunc, nn_params);
|
||||
|
||||
% Visually examine the two gradient computations. The two columns
|
||||
% you get should be very similar.
|
||||
disp([numgrad grad]);
|
||||
fprintf(['The above two columns you get should be very similar.\n' ...
|
||||
'(Left-Your Numerical Gradient, Right-Analytical Gradient)\n\n']);
|
||||
|
||||
% Evaluate the norm of the difference between two solutions.
|
||||
% If you have a correct implementation, and assuming you used EPSILON = 0.0001
|
||||
% in computeNumericalGradient.m, then diff below should be less than 1e-9
|
||||
diff = norm(numgrad-grad)/norm(numgrad+grad);
|
||||
|
||||
fprintf(['If your backpropagation implementation is correct, then \n' ...
|
||||
'the relative difference will be small (less than 1e-9). \n' ...
|
||||
'\nRelative Difference: %g\n'], diff);
|
||||
|
||||
end
|
||||
@@ -0,0 +1,29 @@
|
||||
function numgrad = computeNumericalGradient(J, theta)
|
||||
%COMPUTENUMERICALGRADIENT Computes the gradient using "finite differences"
|
||||
%and gives us a numerical estimate of the gradient.
|
||||
% numgrad = COMPUTENUMERICALGRADIENT(J, theta) computes the numerical
|
||||
% gradient of the function J around theta. Calling y = J(theta) should
|
||||
% return the function value at theta.
|
||||
|
||||
% Notes: The following code implements numerical gradient checking, and
|
||||
% returns the numerical gradient.It sets numgrad(i) to (a numerical
|
||||
% approximation of) the partial derivative of J with respect to the
|
||||
% i-th input argument, evaluated at theta. (i.e., numgrad(i) should
|
||||
% be the (approximately) the partial derivative of J with respect
|
||||
% to theta(i).)
|
||||
%
|
||||
|
||||
numgrad = zeros(size(theta));
|
||||
perturb = zeros(size(theta));
|
||||
e = 1e-4;
|
||||
for p = 1:numel(theta)
|
||||
% Set perturbation vector
|
||||
perturb(p) = e;
|
||||
loss1 = J(theta - perturb);
|
||||
loss2 = J(theta + perturb);
|
||||
% Compute Numerical Gradient
|
||||
numgrad(p) = (loss2 - loss1) / (2*e);
|
||||
perturb(p) = 0;
|
||||
end
|
||||
|
||||
end
|
||||
@@ -0,0 +1,22 @@
|
||||
function W = debugInitializeWeights(fan_out, fan_in)
|
||||
%DEBUGINITIALIZEWEIGHTS Initialize the weights of a layer with fan_in
|
||||
%incoming connections and fan_out outgoing connections using a fixed
|
||||
%strategy, this will help you later in debugging
|
||||
% W = DEBUGINITIALIZEWEIGHTS(fan_in, fan_out) initializes the weights
|
||||
% of a layer with fan_in incoming connections and fan_out outgoing
|
||||
% connections using a fix set of values
|
||||
%
|
||||
% Note that W should be set to a matrix of size(1 + fan_in, fan_out) as
|
||||
% the first row of W handles the "bias" terms
|
||||
%
|
||||
|
||||
% Set W to zeros
|
||||
W = zeros(fan_out, 1 + fan_in);
|
||||
|
||||
% Initialize W using "sin", this ensures that W is always of the same
|
||||
% values and will be useful for debugging
|
||||
W = reshape(sin(1:numel(W)), size(W)) / 10;
|
||||
|
||||
% =========================================================================
|
||||
|
||||
end
|
||||
@@ -0,0 +1,59 @@
|
||||
function [h, display_array] = displayData(X, example_width)
|
||||
%DISPLAYDATA Display 2D data in a nice grid
|
||||
% [h, display_array] = DISPLAYDATA(X, example_width) displays 2D data
|
||||
% stored in X in a nice grid. It returns the figure handle h and the
|
||||
% displayed array if requested.
|
||||
|
||||
% Set example_width automatically if not passed in
|
||||
if ~exist('example_width', 'var') || isempty(example_width)
|
||||
example_width = round(sqrt(size(X, 2)));
|
||||
end
|
||||
|
||||
% Gray Image
|
||||
colormap(gray);
|
||||
|
||||
% Compute rows, cols
|
||||
[m n] = size(X);
|
||||
example_height = (n / example_width);
|
||||
|
||||
% Compute number of items to display
|
||||
display_rows = floor(sqrt(m));
|
||||
display_cols = ceil(m / display_rows);
|
||||
|
||||
% Between images padding
|
||||
pad = 1;
|
||||
|
||||
% Setup blank display
|
||||
display_array = - ones(pad + display_rows * (example_height + pad), ...
|
||||
pad + display_cols * (example_width + pad));
|
||||
|
||||
% Copy each example into a patch on the display array
|
||||
curr_ex = 1;
|
||||
for j = 1:display_rows
|
||||
for i = 1:display_cols
|
||||
if curr_ex > m,
|
||||
break;
|
||||
end
|
||||
% Copy the patch
|
||||
|
||||
% Get the max value of the patch
|
||||
max_val = max(abs(X(curr_ex, :)));
|
||||
display_array(pad + (j - 1) * (example_height + pad) + (1:example_height), ...
|
||||
pad + (i - 1) * (example_width + pad) + (1:example_width)) = ...
|
||||
reshape(X(curr_ex, :), example_height, example_width) / max_val;
|
||||
curr_ex = curr_ex + 1;
|
||||
end
|
||||
if curr_ex > m,
|
||||
break;
|
||||
end
|
||||
end
|
||||
|
||||
% Display Image
|
||||
h = imagesc(display_array, [-1 1]);
|
||||
|
||||
% Do not show axis
|
||||
axis image off
|
||||
|
||||
drawnow;
|
||||
|
||||
end
|
||||
234
machine_learning/course1/mlclass-ex4-008/mlclass-ex4/ex4.m
Normal file
234
machine_learning/course1/mlclass-ex4-008/mlclass-ex4/ex4.m
Normal file
@@ -0,0 +1,234 @@
|
||||
%% Machine Learning Online Class - Exercise 4 Neural Network Learning
|
||||
|
||||
% Instructions
|
||||
% ------------
|
||||
%
|
||||
% This file contains code that helps you get started on the
|
||||
% linear exercise. You will need to complete the following functions
|
||||
% in this exericse:
|
||||
%
|
||||
% sigmoidGradient.m
|
||||
% randInitializeWeights.m
|
||||
% nnCostFunction.m
|
||||
%
|
||||
% For this exercise, you will not need to change any code in this file,
|
||||
% or any other files other than those mentioned above.
|
||||
%
|
||||
|
||||
%% Initialization
|
||||
clear ; close all; clc
|
||||
|
||||
%% Setup the parameters you will use for this exercise
|
||||
input_layer_size = 400; % 20x20 Input Images of Digits
|
||||
hidden_layer_size = 25; % 25 hidden units
|
||||
num_labels = 10; % 10 labels, from 1 to 10
|
||||
% (note that we have mapped "0" to label 10)
|
||||
|
||||
%% =========== Part 1: Loading and Visualizing Data =============
|
||||
% We start the exercise by first loading and visualizing the dataset.
|
||||
% You will be working with a dataset that contains handwritten digits.
|
||||
%
|
||||
|
||||
% Load Training Data
|
||||
fprintf('Loading and Visualizing Data ...\n')
|
||||
|
||||
load('ex4data1.mat');
|
||||
m = size(X, 1);
|
||||
|
||||
% Randomly select 100 data points to display
|
||||
%sel = randperm(size(X, 1));
|
||||
%sel = sel(1:100);
|
||||
|
||||
%displayData(X(sel, :));
|
||||
|
||||
%fprintf('Program paused. Press enter to continue.\n');
|
||||
%pause;
|
||||
|
||||
|
||||
%% ================ Part 2: Loading Parameters ================
|
||||
% In this part of the exercise, we load some pre-initialized
|
||||
% neural network parameters.
|
||||
|
||||
fprintf('\nLoading Saved Neural Network Parameters ...\n')
|
||||
|
||||
% Load the weights into variables Theta1 and Theta2
|
||||
load('ex4weights.mat');
|
||||
|
||||
% Unroll parameters
|
||||
nn_params = [Theta1(:) ; Theta2(:)];
|
||||
|
||||
%% ================ Part 3: Compute Cost (Feedforward) ================
|
||||
% To the neural network, you should first start by implementing the
|
||||
% feedforward part of the neural network that returns the cost only. You
|
||||
% should complete the code in nnCostFunction.m to return cost. After
|
||||
% implementing the feedforward to compute the cost, you can verify that
|
||||
% your implementation is correct by verifying that you get the same cost
|
||||
% as us for the fixed debugging parameters.
|
||||
%
|
||||
% We suggest implementing the feedforward cost *without* regularization
|
||||
% first so that it will be easier for you to debug. Later, in part 4, you
|
||||
% will get to implement the regularized cost.
|
||||
%
|
||||
fprintf('\nFeedforward Using Neural Network ...\n')
|
||||
|
||||
% Weight regularization parameter (we set this to 0 here).
|
||||
lambda = 0;
|
||||
|
||||
J = nnCostFunction(nn_params, input_layer_size, hidden_layer_size, ...
|
||||
num_labels, X, y, lambda);
|
||||
|
||||
fprintf(['Cost at parameters (loaded from ex4weights): %f '...
|
||||
'\n(this value should be about 0.287629)\n'], J);
|
||||
|
||||
fprintf('\nProgram paused. Press enter to continue.\n');
|
||||
%pause;
|
||||
|
||||
%% =============== Part 4: Implement Regularization ===============
|
||||
% Once your cost function implementation is correct, you should now
|
||||
% continue to implement the regularization with the cost.
|
||||
%
|
||||
|
||||
fprintf('\nChecking Cost Function (w/ Regularization) ... \n')
|
||||
|
||||
% Weight regularization parameter (we set this to 1 here).
|
||||
lambda = 1;
|
||||
|
||||
J = nnCostFunction(nn_params, input_layer_size, hidden_layer_size, ...
|
||||
num_labels, X, y, lambda);
|
||||
|
||||
fprintf(['Cost at parameters (loaded from ex4weights): %f '...
|
||||
'\n(this value should be about 0.383770)\n'], J);
|
||||
|
||||
fprintf('Program paused. Press enter to continue.\n');
|
||||
%pause;
|
||||
|
||||
|
||||
%% ================ Part 5: Sigmoid Gradient ================
|
||||
% Before you start implementing the neural network, you will first
|
||||
% implement the gradient for the sigmoid function. You should complete the
|
||||
% code in the sigmoidGradient.m file.
|
||||
%
|
||||
|
||||
fprintf('\nEvaluating sigmoid gradient...\n')
|
||||
|
||||
g = sigmoidGradient([1 -0.5 0 0.5 1]);
|
||||
fprintf('Sigmoid gradient evaluated at [1 -0.5 0 0.5 1]:\n ');
|
||||
fprintf('%f ', g);
|
||||
fprintf('\n\n');
|
||||
|
||||
fprintf('Program paused. Press enter to continue.\n');
|
||||
pause;
|
||||
|
||||
|
||||
%% ================ Part 6: Initializing Pameters ================
|
||||
% In this part of the exercise, you will be starting to implment a two
|
||||
% layer neural network that classifies digits. You will start by
|
||||
% implementing a function to initialize the weights of the neural network
|
||||
% (randInitializeWeights.m)
|
||||
|
||||
fprintf('\nInitializing Neural Network Parameters ...\n')
|
||||
|
||||
initial_Theta1 = randInitializeWeights(input_layer_size, hidden_layer_size);
|
||||
initial_Theta2 = randInitializeWeights(hidden_layer_size, num_labels);
|
||||
|
||||
% Unroll parameters
|
||||
initial_nn_params = [initial_Theta1(:) ; initial_Theta2(:)];
|
||||
|
||||
|
||||
%% =============== Part 7: Implement Backpropagation ===============
|
||||
% Once your cost matches up with ours, you should proceed to implement the
|
||||
% backpropagation algorithm for the neural network. You should add to the
|
||||
% code you've written in nnCostFunction.m to return the partial
|
||||
% derivatives of the parameters.
|
||||
%
|
||||
fprintf('\nChecking Backpropagation... \n');
|
||||
|
||||
% Check gradients by running checkNNGradients
|
||||
checkNNGradients;
|
||||
|
||||
fprintf('\nProgram paused. Press enter to continue.\n');
|
||||
pause;
|
||||
|
||||
|
||||
%% =============== Part 8: Implement Regularization ===============
|
||||
% Once your backpropagation implementation is correct, you should now
|
||||
% continue to implement the regularization with the cost and gradient.
|
||||
%
|
||||
|
||||
fprintf('\nChecking Backpropagation (w/ Regularization) ... \n')
|
||||
|
||||
% Check gradients by running checkNNGradients
|
||||
lambda = 3;
|
||||
checkNNGradients(lambda);
|
||||
|
||||
% Also output the costFunction debugging values
|
||||
debug_J = nnCostFunction(nn_params, input_layer_size, ...
|
||||
hidden_layer_size, num_labels, X, y, lambda);
|
||||
|
||||
fprintf(['\n\nCost at (fixed) debugging parameters (w/ lambda = 10): %f ' ...
|
||||
'\n(this value should be about 0.576051)\n\n'], debug_J);
|
||||
|
||||
fprintf('Program paused. Press enter to continue.\n');
|
||||
pause;
|
||||
|
||||
|
||||
%% =================== Part 8: Training NN ===================
|
||||
% You have now implemented all the code necessary to train a neural
|
||||
% network. To train your neural network, we will now use "fmincg", which
|
||||
% is a function which works similarly to "fminunc". Recall that these
|
||||
% advanced optimizers are able to train our cost functions efficiently as
|
||||
% long as we provide them with the gradient computations.
|
||||
%
|
||||
fprintf('\nTraining Neural Network... \n')
|
||||
|
||||
% After you have completed the assignment, change the MaxIter to a larger
|
||||
% value to see how more training helps.
|
||||
options = optimset('MaxIter', 50);
|
||||
|
||||
% You should also try different values of lambda
|
||||
lambda = 1;
|
||||
|
||||
% Create "short hand" for the cost function to be minimized
|
||||
costFunction = @(p) nnCostFunction(p, ...
|
||||
input_layer_size, ...
|
||||
hidden_layer_size, ...
|
||||
num_labels, X, y, lambda);
|
||||
|
||||
% Now, costFunction is a function that takes in only one argument (the
|
||||
% neural network parameters)
|
||||
[nn_params, cost] = fmincg(costFunction, initial_nn_params, options);
|
||||
|
||||
% Obtain Theta1 and Theta2 back from nn_params
|
||||
Theta1 = reshape(nn_params(1:hidden_layer_size * (input_layer_size + 1)), ...
|
||||
hidden_layer_size, (input_layer_size + 1));
|
||||
|
||||
Theta2 = reshape(nn_params((1 + (hidden_layer_size * (input_layer_size + 1))):end), ...
|
||||
num_labels, (hidden_layer_size + 1));
|
||||
|
||||
fprintf('Program paused. Press enter to continue.\n');
|
||||
pause;
|
||||
|
||||
|
||||
%% ================= Part 9: Visualize Weights =================
|
||||
% You can now "visualize" what the neural network is learning by
|
||||
% displaying the hidden units to see what features they are capturing in
|
||||
% the data.
|
||||
|
||||
%fprintf('\nVisualizing Neural Network... \n')
|
||||
|
||||
%displayData(Theta1(:, 2:end));
|
||||
|
||||
%fprintf('\nProgram paused. Press enter to continue.\n');
|
||||
%pause;
|
||||
|
||||
%% ================= Part 10: Implement Predict =================
|
||||
% After training the neural network, we would like to use it to predict
|
||||
% the labels. You will now implement the "predict" function to use the
|
||||
% neural network to predict the labels of the training set. This lets
|
||||
% you compute the training set accuracy.
|
||||
|
||||
pred = predict(Theta1, Theta2, X);
|
||||
|
||||
fprintf('\nTraining Set Accuracy: %f\n', mean(double(pred == y)) * 100);
|
||||
|
||||
|
||||
Binary file not shown.
Binary file not shown.
175
machine_learning/course1/mlclass-ex4-008/mlclass-ex4/fmincg.m
Normal file
175
machine_learning/course1/mlclass-ex4-008/mlclass-ex4/fmincg.m
Normal file
@@ -0,0 +1,175 @@
|
||||
function [X, fX, i] = fmincg(f, X, options, P1, P2, P3, P4, P5)
|
||||
% Minimize a continuous differentialble multivariate function. Starting point
|
||||
% is given by "X" (D by 1), and the function named in the string "f", must
|
||||
% return a function value and a vector of partial derivatives. The Polack-
|
||||
% Ribiere flavour of conjugate gradients is used to compute search directions,
|
||||
% and a line search using quadratic and cubic polynomial approximations and the
|
||||
% Wolfe-Powell stopping criteria is used together with the slope ratio method
|
||||
% for guessing initial step sizes. Additionally a bunch of checks are made to
|
||||
% make sure that exploration is taking place and that extrapolation will not
|
||||
% be unboundedly large. The "length" gives the length of the run: if it is
|
||||
% positive, it gives the maximum number of line searches, if negative its
|
||||
% absolute gives the maximum allowed number of function evaluations. You can
|
||||
% (optionally) give "length" a second component, which will indicate the
|
||||
% reduction in function value to be expected in the first line-search (defaults
|
||||
% to 1.0). The function returns when either its length is up, or if no further
|
||||
% progress can be made (ie, we are at a minimum, or so close that due to
|
||||
% numerical problems, we cannot get any closer). If the function terminates
|
||||
% within a few iterations, it could be an indication that the function value
|
||||
% and derivatives are not consistent (ie, there may be a bug in the
|
||||
% implementation of your "f" function). The function returns the found
|
||||
% solution "X", a vector of function values "fX" indicating the progress made
|
||||
% and "i" the number of iterations (line searches or function evaluations,
|
||||
% depending on the sign of "length") used.
|
||||
%
|
||||
% Usage: [X, fX, i] = fmincg(f, X, options, P1, P2, P3, P4, P5)
|
||||
%
|
||||
% See also: checkgrad
|
||||
%
|
||||
% Copyright (C) 2001 and 2002 by Carl Edward Rasmussen. Date 2002-02-13
|
||||
%
|
||||
%
|
||||
% (C) Copyright 1999, 2000 & 2001, Carl Edward Rasmussen
|
||||
%
|
||||
% Permission is granted for anyone to copy, use, or modify these
|
||||
% programs and accompanying documents for purposes of research or
|
||||
% education, provided this copyright notice is retained, and note is
|
||||
% made of any changes that have been made.
|
||||
%
|
||||
% These programs and documents are distributed without any warranty,
|
||||
% express or implied. As the programs were written for research
|
||||
% purposes only, they have not been tested to the degree that would be
|
||||
% advisable in any important application. All use of these programs is
|
||||
% entirely at the user's own risk.
|
||||
%
|
||||
% [ml-class] Changes Made:
|
||||
% 1) Function name and argument specifications
|
||||
% 2) Output display
|
||||
%
|
||||
|
||||
% Read options
|
||||
if exist('options', 'var') && ~isempty(options) && isfield(options, 'MaxIter')
|
||||
length = options.MaxIter;
|
||||
else
|
||||
length = 100;
|
||||
end
|
||||
|
||||
|
||||
RHO = 0.01; % a bunch of constants for line searches
|
||||
SIG = 0.5; % RHO and SIG are the constants in the Wolfe-Powell conditions
|
||||
INT = 0.1; % don't reevaluate within 0.1 of the limit of the current bracket
|
||||
EXT = 3.0; % extrapolate maximum 3 times the current bracket
|
||||
MAX = 20; % max 20 function evaluations per line search
|
||||
RATIO = 100; % maximum allowed slope ratio
|
||||
|
||||
argstr = ['feval(f, X']; % compose string used to call function
|
||||
for i = 1:(nargin - 3)
|
||||
argstr = [argstr, ',P', int2str(i)];
|
||||
end
|
||||
argstr = [argstr, ')'];
|
||||
|
||||
if max(size(length)) == 2, red=length(2); length=length(1); else red=1; end
|
||||
S=['Iteration '];
|
||||
|
||||
i = 0; % zero the run length counter
|
||||
ls_failed = 0; % no previous line search has failed
|
||||
fX = [];
|
||||
[f1 df1] = eval(argstr); % get function value and gradient
|
||||
i = i + (length<0); % count epochs?!
|
||||
s = -df1; % search direction is steepest
|
||||
d1 = -s'*s; % this is the slope
|
||||
z1 = red/(1-d1); % initial step is red/(|s|+1)
|
||||
|
||||
while i < abs(length) % while not finished
|
||||
i = i + (length>0); % count iterations?!
|
||||
|
||||
X0 = X; f0 = f1; df0 = df1; % make a copy of current values
|
||||
X = X + z1*s; % begin line search
|
||||
[f2 df2] = eval(argstr);
|
||||
i = i + (length<0); % count epochs?!
|
||||
d2 = df2'*s;
|
||||
f3 = f1; d3 = d1; z3 = -z1; % initialize point 3 equal to point 1
|
||||
if length>0, M = MAX; else M = min(MAX, -length-i); end
|
||||
success = 0; limit = -1; % initialize quanteties
|
||||
while 1
|
||||
while ((f2 > f1+z1*RHO*d1) | (d2 > -SIG*d1)) & (M > 0)
|
||||
limit = z1; % tighten the bracket
|
||||
if f2 > f1
|
||||
z2 = z3 - (0.5*d3*z3*z3)/(d3*z3+f2-f3); % quadratic fit
|
||||
else
|
||||
A = 6*(f2-f3)/z3+3*(d2+d3); % cubic fit
|
||||
B = 3*(f3-f2)-z3*(d3+2*d2);
|
||||
z2 = (sqrt(B*B-A*d2*z3*z3)-B)/A; % numerical error possible - ok!
|
||||
end
|
||||
if isnan(z2) | isinf(z2)
|
||||
z2 = z3/2; % if we had a numerical problem then bisect
|
||||
end
|
||||
z2 = max(min(z2, INT*z3),(1-INT)*z3); % don't accept too close to limits
|
||||
z1 = z1 + z2; % update the step
|
||||
X = X + z2*s;
|
||||
[f2 df2] = eval(argstr);
|
||||
M = M - 1; i = i + (length<0); % count epochs?!
|
||||
d2 = df2'*s;
|
||||
z3 = z3-z2; % z3 is now relative to the location of z2
|
||||
end
|
||||
if f2 > f1+z1*RHO*d1 | d2 > -SIG*d1
|
||||
break; % this is a failure
|
||||
elseif d2 > SIG*d1
|
||||
success = 1; break; % success
|
||||
elseif M == 0
|
||||
break; % failure
|
||||
end
|
||||
A = 6*(f2-f3)/z3+3*(d2+d3); % make cubic extrapolation
|
||||
B = 3*(f3-f2)-z3*(d3+2*d2);
|
||||
z2 = -d2*z3*z3/(B+sqrt(B*B-A*d2*z3*z3)); % num. error possible - ok!
|
||||
if ~isreal(z2) | isnan(z2) | isinf(z2) | z2 < 0 % num prob or wrong sign?
|
||||
if limit < -0.5 % if we have no upper limit
|
||||
z2 = z1 * (EXT-1); % the extrapolate the maximum amount
|
||||
else
|
||||
z2 = (limit-z1)/2; % otherwise bisect
|
||||
end
|
||||
elseif (limit > -0.5) & (z2+z1 > limit) % extraplation beyond max?
|
||||
z2 = (limit-z1)/2; % bisect
|
||||
elseif (limit < -0.5) & (z2+z1 > z1*EXT) % extrapolation beyond limit
|
||||
z2 = z1*(EXT-1.0); % set to extrapolation limit
|
||||
elseif z2 < -z3*INT
|
||||
z2 = -z3*INT;
|
||||
elseif (limit > -0.5) & (z2 < (limit-z1)*(1.0-INT)) % too close to limit?
|
||||
z2 = (limit-z1)*(1.0-INT);
|
||||
end
|
||||
f3 = f2; d3 = d2; z3 = -z2; % set point 3 equal to point 2
|
||||
z1 = z1 + z2; X = X + z2*s; % update current estimates
|
||||
[f2 df2] = eval(argstr);
|
||||
M = M - 1; i = i + (length<0); % count epochs?!
|
||||
d2 = df2'*s;
|
||||
end % end of line search
|
||||
|
||||
if success % if line search succeeded
|
||||
f1 = f2; fX = [fX' f1]';
|
||||
fprintf('%s %4i | Cost: %4.6e\r', S, i, f1);
|
||||
s = (df2'*df2-df1'*df2)/(df1'*df1)*s - df2; % Polack-Ribiere direction
|
||||
tmp = df1; df1 = df2; df2 = tmp; % swap derivatives
|
||||
d2 = df1'*s;
|
||||
if d2 > 0 % new slope must be negative
|
||||
s = -df1; % otherwise use steepest direction
|
||||
d2 = -s'*s;
|
||||
end
|
||||
z1 = z1 * min(RATIO, d1/(d2-realmin)); % slope ratio but max RATIO
|
||||
d1 = d2;
|
||||
ls_failed = 0; % this line search did not fail
|
||||
else
|
||||
X = X0; f1 = f0; df1 = df0; % restore point from before failed line search
|
||||
if ls_failed | i > abs(length) % line search failed twice in a row
|
||||
break; % or we ran out of time, so we give up
|
||||
end
|
||||
tmp = df1; df1 = df2; df2 = tmp; % swap derivatives
|
||||
s = -df1; % try steepest
|
||||
d1 = -s'*s;
|
||||
z1 = 1/(1-d1);
|
||||
ls_failed = 1; % this line search failed
|
||||
end
|
||||
if exist('OCTAVE_VERSION')
|
||||
fflush(stdout);
|
||||
end
|
||||
end
|
||||
fprintf('\n');
|
||||
@@ -0,0 +1,129 @@
|
||||
function [J grad] = nnCostFunction(nn_params, ...
|
||||
input_layer_size, ...
|
||||
hidden_layer_size, ...
|
||||
num_labels, ...
|
||||
X, y, lambda)
|
||||
%NNCOSTFUNCTION Implements the neural network cost function for a two layer
|
||||
%neural network which performs classification
|
||||
% [J grad] = NNCOSTFUNCTON(nn_params, hidden_layer_size, num_labels, ...
|
||||
% X, y, lambda) computes the cost and gradient of the neural network. The
|
||||
% parameters for the neural network are "unrolled" into the vector
|
||||
% nn_params and need to be converted back into the weight matrices.
|
||||
%
|
||||
% The returned parameter grad should be a "unrolled" vector of the
|
||||
% partial derivatives of the neural network.
|
||||
%
|
||||
|
||||
% Reshape nn_params back into the parameters Theta1 and Theta2, the weight matrices
|
||||
% for our 2 layer neural network
|
||||
Theta1 = reshape(nn_params(1:hidden_layer_size * (input_layer_size + 1)), ...
|
||||
hidden_layer_size, (input_layer_size + 1));
|
||||
|
||||
Theta2 = reshape(nn_params((1 + (hidden_layer_size * (input_layer_size + 1))):end), ...
|
||||
num_labels, (hidden_layer_size + 1));
|
||||
|
||||
% Setup some useful variables
|
||||
m = size(X, 1);
|
||||
|
||||
% You need to return the following variables correctly
|
||||
J = 0;
|
||||
Theta1_grad = zeros(size(Theta1));
|
||||
Theta2_grad = zeros(size(Theta2));
|
||||
|
||||
% ====================== YOUR CODE HERE ======================
|
||||
% Instructions: You should complete the code by working through the
|
||||
% following parts.
|
||||
%
|
||||
% Part 1: Feedforward the neural network and return the cost in the
|
||||
% variable J. After implementing Part 1, you can verify that your
|
||||
% cost function computation is correct by verifying the cost
|
||||
% computed in ex4.m
|
||||
%
|
||||
% Part 2: Implement the backpropagation algorithm to compute the gradients
|
||||
% Theta1_grad and Theta2_grad. You should return the partial derivatives of
|
||||
% the cost function with respect to Theta1 and Theta2 in Theta1_grad and
|
||||
% Theta2_grad, respectively. After implementing Part 2, you can check
|
||||
% that your implementation is correct by running checkNNGradients
|
||||
%
|
||||
% Note: The vector y passed into the function is a vector of labels
|
||||
% containing values from 1..K. You need to map this vector into a
|
||||
% binary vector of 1's and 0's to be used with the neural network
|
||||
% cost function.
|
||||
%
|
||||
% Hint: We recommend implementing backpropagation using a for-loop
|
||||
% over the training examples if you are implementing it for the
|
||||
% first time.
|
||||
%
|
||||
% Part 3: Implement regularization with the cost function and gradients.
|
||||
%
|
||||
% Hint: You can implement this around the code for
|
||||
% backpropagation. That is, you can compute the gradients for
|
||||
% the regularization separately and then add them to Theta1_grad
|
||||
% and Theta2_grad from Part 2.
|
||||
%
|
||||
|
||||
|
||||
%
|
||||
% Activations ....
|
||||
%
|
||||
a1 = [ones(m, 1) X];
|
||||
a2 = [ones(m,1) sigmoid(a1*Theta1')];
|
||||
a3 = sigmoid(a2*Theta2');
|
||||
h = a3;
|
||||
|
||||
%
|
||||
% Transform y to .....
|
||||
%
|
||||
Y = zeros(m,num_labels);
|
||||
for i=1:m,
|
||||
Y(i,y(i))=1;
|
||||
end
|
||||
|
||||
%
|
||||
% This is the J without ....
|
||||
%
|
||||
J = sum(sum( Y .* log(h) .+ (1-Y) .* log(1-h) )) / (-m);
|
||||
J = J + (lambda/(2*m))*sum(sum(Theta1(:,2:size(Theta1,2)).^2));
|
||||
J = J + (lambda/(2*m))*sum(sum(Theta2(:,2:size(Theta2,2)).^2));
|
||||
|
||||
%
|
||||
% Gradient ....
|
||||
%
|
||||
d3 = a3 .- Y;
|
||||
d2 = d3 * Theta2 .* (a2.*(1-a2));
|
||||
|
||||
dlt1 = zeros(size(Theta1));
|
||||
dlt2 = zeros(size(Theta2));
|
||||
for i=1:m,
|
||||
dlt2 = dlt2 + d3(i,:)'*a2(i,:);
|
||||
t = d2(i,:)'*a1(i,:);
|
||||
t = t(2:size(t,1),:);
|
||||
dlt1 = dlt1 + t;
|
||||
end
|
||||
|
||||
Theta1_grad = dlt1/m;
|
||||
Theta2_grad = dlt2/m;
|
||||
|
||||
%
|
||||
% Regularization ....
|
||||
%
|
||||
r1 = lambda*Theta1/m;
|
||||
r2 = lambda*Theta2/m;
|
||||
|
||||
t1s = size(Theta1);
|
||||
r1 = [ zeros(t1s(1),1) r1(:,2:t1s(2))];
|
||||
|
||||
t2s = size(Theta2);
|
||||
r2 = [ zeros(t2s(1),1) r2(:,2:t2s(2))];
|
||||
|
||||
Theta1_grad = Theta1_grad + r1;
|
||||
Theta2_grad = Theta2_grad + r2;
|
||||
|
||||
|
||||
% =========================================================================
|
||||
|
||||
% Unroll gradients
|
||||
grad = [Theta1_grad(:) ; Theta2_grad(:)];
|
||||
|
||||
|
||||
end
|
||||
@@ -0,0 +1,20 @@
|
||||
function p = predict(Theta1, Theta2, X)
|
||||
%PREDICT Predict the label of an input given a trained neural network
|
||||
% p = PREDICT(Theta1, Theta2, X) outputs the predicted label of X given the
|
||||
% trained weights of a neural network (Theta1, Theta2)
|
||||
|
||||
% Useful values
|
||||
m = size(X, 1);
|
||||
num_labels = size(Theta2, 1);
|
||||
|
||||
% You need to return the following variables correctly
|
||||
p = zeros(size(X, 1), 1);
|
||||
|
||||
h1 = sigmoid([ones(m, 1) X] * Theta1');
|
||||
h2 = sigmoid([ones(m, 1) h1] * Theta2');
|
||||
[dummy, p] = max(h2, [], 2);
|
||||
|
||||
% =========================================================================
|
||||
|
||||
|
||||
end
|
||||
@@ -0,0 +1,31 @@
|
||||
function W = randInitializeWeights(L_in, L_out)
|
||||
%RANDINITIALIZEWEIGHTS Randomly initialize the weights of a layer with L_in
|
||||
%incoming connections and L_out outgoing connections
|
||||
% W = RANDINITIALIZEWEIGHTS(L_in, L_out) randomly initializes the weights
|
||||
% of a layer with L_in incoming connections and L_out outgoing
|
||||
% connections.
|
||||
%
|
||||
% Note that W should be set to a matrix of size(L_out, 1 + L_in) as
|
||||
% the column row of W handles the "bias" terms
|
||||
%
|
||||
|
||||
% You need to return the following variables correctly
|
||||
W = zeros(L_out, 1 + L_in);
|
||||
|
||||
% ====================== YOUR CODE HERE ======================
|
||||
% Instructions: Initialize W randomly so that we break the symmetry while
|
||||
% training the neural network.
|
||||
%
|
||||
% Note: The first row of W corresponds to the parameters for the bias units
|
||||
%
|
||||
|
||||
eps = 0.001;
|
||||
W = rand(L_out,1+L_in)*(2*eps) - eps;
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
% =========================================================================
|
||||
|
||||
end
|
||||
@@ -0,0 +1,6 @@
|
||||
function g = sigmoid(z)
|
||||
%SIGMOID Compute sigmoid functoon
|
||||
% J = SIGMOID(z) computes the sigmoid of z.
|
||||
|
||||
g = 1.0 ./ (1.0 + exp(-z));
|
||||
end
|
||||
@@ -0,0 +1,23 @@
|
||||
function g = sigmoidGradient(z)
|
||||
%SIGMOIDGRADIENT returns the gradient of the sigmoid function
|
||||
%evaluated at z
|
||||
% g = SIGMOIDGRADIENT(z) computes the gradient of the sigmoid function
|
||||
% evaluated at z. This should work regardless if z is a matrix or a
|
||||
% vector. In particular, if z is a vector or matrix, you should return
|
||||
% the gradient for each element.
|
||||
|
||||
g = zeros(size(z));
|
||||
|
||||
% ====================== YOUR CODE HERE ======================
|
||||
% Instructions: Compute the gradient of the sigmoid function evaluated at
|
||||
% each value of z (z can be a matrix, vector or scalar).
|
||||
|
||||
e = exp(-1*z);
|
||||
g = e ./ ((e+1).^2);
|
||||
|
||||
% =============================================================
|
||||
|
||||
|
||||
|
||||
|
||||
end
|
||||
578
machine_learning/course1/mlclass-ex4-008/mlclass-ex4/submit.m
Normal file
578
machine_learning/course1/mlclass-ex4-008/mlclass-ex4/submit.m
Normal file
@@ -0,0 +1,578 @@
|
||||
function submit(partId, webSubmit)
|
||||
%SUBMIT Submit your code and output to the ml-class servers
|
||||
% SUBMIT() will connect to the ml-class server and submit your solution
|
||||
|
||||
fprintf('==\n== [ml-class] Submitting Solutions | Programming Exercise %s\n==\n', ...
|
||||
homework_id());
|
||||
if ~exist('partId', 'var') || isempty(partId)
|
||||
partId = promptPart();
|
||||
end
|
||||
|
||||
if ~exist('webSubmit', 'var') || isempty(webSubmit)
|
||||
webSubmit = 0; % submit directly by default
|
||||
end
|
||||
|
||||
% Check valid partId
|
||||
partNames = validParts();
|
||||
if ~isValidPartId(partId)
|
||||
fprintf('!! Invalid homework part selected.\n');
|
||||
fprintf('!! Expected an integer from 1 to %d.\n', numel(partNames) + 1);
|
||||
fprintf('!! Submission Cancelled\n');
|
||||
return
|
||||
end
|
||||
|
||||
if ~exist('ml_login_data.mat','file')
|
||||
[login password] = loginPrompt();
|
||||
save('ml_login_data.mat','login','password');
|
||||
else
|
||||
load('ml_login_data.mat');
|
||||
[login password] = quickLogin(login, password);
|
||||
save('ml_login_data.mat','login','password');
|
||||
end
|
||||
|
||||
if isempty(login)
|
||||
fprintf('!! Submission Cancelled\n');
|
||||
return
|
||||
end
|
||||
|
||||
fprintf('\n== Connecting to ml-class ... ');
|
||||
if exist('OCTAVE_VERSION')
|
||||
fflush(stdout);
|
||||
end
|
||||
|
||||
% Setup submit list
|
||||
if partId == numel(partNames) + 1
|
||||
submitParts = 1:numel(partNames);
|
||||
else
|
||||
submitParts = [partId];
|
||||
end
|
||||
|
||||
for s = 1:numel(submitParts)
|
||||
thisPartId = submitParts(s);
|
||||
if (~webSubmit) % submit directly to server
|
||||
[login, ch, signature, auxstring] = getChallenge(login, thisPartId);
|
||||
if isempty(login) || isempty(ch) || isempty(signature)
|
||||
% Some error occured, error string in first return element.
|
||||
fprintf('\n!! Error: %s\n\n', login);
|
||||
return
|
||||
end
|
||||
|
||||
% Attempt Submission with Challenge
|
||||
ch_resp = challengeResponse(login, password, ch);
|
||||
|
||||
[result, str] = submitSolution(login, ch_resp, thisPartId, ...
|
||||
output(thisPartId, auxstring), source(thisPartId), signature);
|
||||
|
||||
partName = partNames{thisPartId};
|
||||
|
||||
fprintf('\n== [ml-class] Submitted Assignment %s - Part %d - %s\n', ...
|
||||
homework_id(), thisPartId, partName);
|
||||
fprintf('== %s\n', strtrim(str));
|
||||
|
||||
if exist('OCTAVE_VERSION')
|
||||
fflush(stdout);
|
||||
end
|
||||
else
|
||||
[result] = submitSolutionWeb(login, thisPartId, output(thisPartId), ...
|
||||
source(thisPartId));
|
||||
result = base64encode(result);
|
||||
|
||||
fprintf('\nSave as submission file [submit_ex%s_part%d.txt (enter to accept default)]:', ...
|
||||
homework_id(), thisPartId);
|
||||
saveAsFile = input('', 's');
|
||||
if (isempty(saveAsFile))
|
||||
saveAsFile = sprintf('submit_ex%s_part%d.txt', homework_id(), thisPartId);
|
||||
end
|
||||
|
||||
fid = fopen(saveAsFile, 'w');
|
||||
if (fid)
|
||||
fwrite(fid, result);
|
||||
fclose(fid);
|
||||
fprintf('\nSaved your solutions to %s.\n\n', saveAsFile);
|
||||
fprintf(['You can now submit your solutions through the web \n' ...
|
||||
'form in the programming exercises. Select the corresponding \n' ...
|
||||
'programming exercise to access the form.\n']);
|
||||
|
||||
else
|
||||
fprintf('Unable to save to %s\n\n', saveAsFile);
|
||||
fprintf(['You can create a submission file by saving the \n' ...
|
||||
'following text in a file: (press enter to continue)\n\n']);
|
||||
pause;
|
||||
fprintf(result);
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
% ================== CONFIGURABLES FOR EACH HOMEWORK ==================
|
||||
|
||||
function id = homework_id()
|
||||
id = '4';
|
||||
end
|
||||
|
||||
function [partNames] = validParts()
|
||||
partNames = { 'Feedforward and Cost Function', ...
|
||||
'Regularized Cost Function', ...
|
||||
'Sigmoid Gradient', ...
|
||||
'Neural Network Gradient (Backpropagation)' ...
|
||||
'Regularized Gradient' ...
|
||||
};
|
||||
end
|
||||
|
||||
function srcs = sources()
|
||||
% Separated by part
|
||||
srcs = { { 'nnCostFunction.m' }, ...
|
||||
{ 'nnCostFunction.m' }, ...
|
||||
{ 'sigmoidGradient.m' }, ...
|
||||
{ 'nnCostFunction.m' }, ...
|
||||
{ 'nnCostFunction.m' } };
|
||||
end
|
||||
|
||||
function out = output(partId, auxstring)
|
||||
% Random Test Cases
|
||||
X = reshape(3 * sin(1:1:30), 3, 10);
|
||||
Xm = reshape(sin(1:32), 16, 2) / 5;
|
||||
ym = 1 + mod(1:16,4)';
|
||||
t1 = sin(reshape(1:2:24, 4, 3));
|
||||
t2 = cos(reshape(1:2:40, 4, 5));
|
||||
t = [t1(:) ; t2(:)];
|
||||
if partId == 1
|
||||
[J] = nnCostFunction(t, 2, 4, 4, Xm, ym, 0);
|
||||
out = sprintf('%0.5f ', J);
|
||||
elseif partId == 2
|
||||
[J] = nnCostFunction(t, 2, 4, 4, Xm, ym, 1.5);
|
||||
out = sprintf('%0.5f ', J);
|
||||
elseif partId == 3
|
||||
out = sprintf('%0.5f ', sigmoidGradient(X));
|
||||
elseif partId == 4
|
||||
[J, grad] = nnCostFunction(t, 2, 4, 4, Xm, ym, 0);
|
||||
out = sprintf('%0.5f ', J);
|
||||
out = [out sprintf('%0.5f ', grad)];
|
||||
elseif partId == 5
|
||||
[J, grad] = nnCostFunction(t, 2, 4, 4, Xm, ym, 1.5);
|
||||
out = sprintf('%0.5f ', J);
|
||||
out = [out sprintf('%0.5f ', grad)];
|
||||
end
|
||||
end
|
||||
|
||||
|
||||
% ====================== SERVER CONFIGURATION ===========================
|
||||
|
||||
% ***************** REMOVE -staging WHEN YOU DEPLOY *********************
|
||||
function url = site_url()
|
||||
url = 'http://class.coursera.org/ml-008';
|
||||
end
|
||||
|
||||
function url = challenge_url()
|
||||
url = [site_url() '/assignment/challenge'];
|
||||
end
|
||||
|
||||
function url = submit_url()
|
||||
url = [site_url() '/assignment/submit'];
|
||||
end
|
||||
|
||||
% ========================= CHALLENGE HELPERS =========================
|
||||
|
||||
function src = source(partId)
|
||||
src = '';
|
||||
src_files = sources();
|
||||
if partId <= numel(src_files)
|
||||
flist = src_files{partId};
|
||||
for i = 1:numel(flist)
|
||||
fid = fopen(flist{i});
|
||||
if (fid == -1)
|
||||
error('Error opening %s (is it missing?)', flist{i});
|
||||
end
|
||||
line = fgets(fid);
|
||||
while ischar(line)
|
||||
src = [src line];
|
||||
line = fgets(fid);
|
||||
end
|
||||
fclose(fid);
|
||||
src = [src '||||||||'];
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
function ret = isValidPartId(partId)
|
||||
partNames = validParts();
|
||||
ret = (~isempty(partId)) && (partId >= 1) && (partId <= numel(partNames) + 1);
|
||||
end
|
||||
|
||||
function partId = promptPart()
|
||||
fprintf('== Select which part(s) to submit:\n');
|
||||
partNames = validParts();
|
||||
srcFiles = sources();
|
||||
for i = 1:numel(partNames)
|
||||
fprintf('== %d) %s [', i, partNames{i});
|
||||
fprintf(' %s ', srcFiles{i}{:});
|
||||
fprintf(']\n');
|
||||
end
|
||||
fprintf('== %d) All of the above \n==\nEnter your choice [1-%d]: ', ...
|
||||
numel(partNames) + 1, numel(partNames) + 1);
|
||||
selPart = input('', 's');
|
||||
partId = str2num(selPart);
|
||||
if ~isValidPartId(partId)
|
||||
partId = -1;
|
||||
end
|
||||
end
|
||||
|
||||
function [email,ch,signature,auxstring] = getChallenge(email, part)
|
||||
str = urlread(challenge_url(), 'post', {'email_address', email, 'assignment_part_sid', [homework_id() '-' num2str(part)], 'response_encoding', 'delim'});
|
||||
|
||||
str = strtrim(str);
|
||||
r = struct;
|
||||
while(numel(str) > 0)
|
||||
[f, str] = strtok (str, '|');
|
||||
[v, str] = strtok (str, '|');
|
||||
r = setfield(r, f, v);
|
||||
end
|
||||
|
||||
email = getfield(r, 'email_address');
|
||||
ch = getfield(r, 'challenge_key');
|
||||
signature = getfield(r, 'state');
|
||||
auxstring = getfield(r, 'challenge_aux_data');
|
||||
end
|
||||
|
||||
function [result, str] = submitSolutionWeb(email, part, output, source)
|
||||
|
||||
result = ['{"assignment_part_sid":"' base64encode([homework_id() '-' num2str(part)], '') '",' ...
|
||||
'"email_address":"' base64encode(email, '') '",' ...
|
||||
'"submission":"' base64encode(output, '') '",' ...
|
||||
'"submission_aux":"' base64encode(source, '') '"' ...
|
||||
'}'];
|
||||
str = 'Web-submission';
|
||||
end
|
||||
|
||||
function [result, str] = submitSolution(email, ch_resp, part, output, ...
|
||||
source, signature)
|
||||
|
||||
params = {'assignment_part_sid', [homework_id() '-' num2str(part)], ...
|
||||
'email_address', email, ...
|
||||
'submission', base64encode(output, ''), ...
|
||||
'submission_aux', base64encode(source, ''), ...
|
||||
'challenge_response', ch_resp, ...
|
||||
'state', signature};
|
||||
|
||||
str = urlread(submit_url(), 'post', params);
|
||||
|
||||
% Parse str to read for success / failure
|
||||
result = 0;
|
||||
|
||||
end
|
||||
|
||||
% =========================== LOGIN HELPERS ===========================
|
||||
|
||||
function [login password] = loginPrompt()
|
||||
% Prompt for password
|
||||
[login password] = basicPrompt();
|
||||
|
||||
if isempty(login) || isempty(password)
|
||||
login = []; password = [];
|
||||
end
|
||||
end
|
||||
|
||||
|
||||
function [login password] = basicPrompt()
|
||||
login = input('Login (Email address): ', 's');
|
||||
password = input('Password: ', 's');
|
||||
end
|
||||
|
||||
function [login password] = quickLogin(login,password)
|
||||
disp(['You are currently logged in as ' login '.']);
|
||||
cont_token = input('Is this you? (y/n - type n to reenter password)','s');
|
||||
if(isempty(cont_token) || cont_token(1)=='Y'||cont_token(1)=='y')
|
||||
return;
|
||||
else
|
||||
[login password] = loginPrompt();
|
||||
end
|
||||
end
|
||||
|
||||
function [str] = challengeResponse(email, passwd, challenge)
|
||||
str = sha1([challenge passwd]);
|
||||
end
|
||||
|
||||
% =============================== SHA-1 ================================
|
||||
|
||||
function hash = sha1(str)
|
||||
|
||||
% Initialize variables
|
||||
h0 = uint32(1732584193);
|
||||
h1 = uint32(4023233417);
|
||||
h2 = uint32(2562383102);
|
||||
h3 = uint32(271733878);
|
||||
h4 = uint32(3285377520);
|
||||
|
||||
% Convert to word array
|
||||
strlen = numel(str);
|
||||
|
||||
% Break string into chars and append the bit 1 to the message
|
||||
mC = [double(str) 128];
|
||||
mC = [mC zeros(1, 4-mod(numel(mC), 4), 'uint8')];
|
||||
|
||||
numB = strlen * 8;
|
||||
if exist('idivide')
|
||||
numC = idivide(uint32(numB + 65), 512, 'ceil');
|
||||
else
|
||||
numC = ceil(double(numB + 65)/512);
|
||||
end
|
||||
numW = numC * 16;
|
||||
mW = zeros(numW, 1, 'uint32');
|
||||
|
||||
idx = 1;
|
||||
for i = 1:4:strlen + 1
|
||||
mW(idx) = bitor(bitor(bitor( ...
|
||||
bitshift(uint32(mC(i)), 24), ...
|
||||
bitshift(uint32(mC(i+1)), 16)), ...
|
||||
bitshift(uint32(mC(i+2)), 8)), ...
|
||||
uint32(mC(i+3)));
|
||||
idx = idx + 1;
|
||||
end
|
||||
|
||||
% Append length of message
|
||||
mW(numW - 1) = uint32(bitshift(uint64(numB), -32));
|
||||
mW(numW) = uint32(bitshift(bitshift(uint64(numB), 32), -32));
|
||||
|
||||
% Process the message in successive 512-bit chs
|
||||
for cId = 1 : double(numC)
|
||||
cSt = (cId - 1) * 16 + 1;
|
||||
cEnd = cId * 16;
|
||||
ch = mW(cSt : cEnd);
|
||||
|
||||
% Extend the sixteen 32-bit words into eighty 32-bit words
|
||||
for j = 17 : 80
|
||||
ch(j) = ch(j - 3);
|
||||
ch(j) = bitxor(ch(j), ch(j - 8));
|
||||
ch(j) = bitxor(ch(j), ch(j - 14));
|
||||
ch(j) = bitxor(ch(j), ch(j - 16));
|
||||
ch(j) = bitrotate(ch(j), 1);
|
||||
end
|
||||
|
||||
% Initialize hash value for this ch
|
||||
a = h0;
|
||||
b = h1;
|
||||
c = h2;
|
||||
d = h3;
|
||||
e = h4;
|
||||
|
||||
% Main loop
|
||||
for i = 1 : 80
|
||||
if(i >= 1 && i <= 20)
|
||||
f = bitor(bitand(b, c), bitand(bitcmp(b), d));
|
||||
k = uint32(1518500249);
|
||||
elseif(i >= 21 && i <= 40)
|
||||
f = bitxor(bitxor(b, c), d);
|
||||
k = uint32(1859775393);
|
||||
elseif(i >= 41 && i <= 60)
|
||||
f = bitor(bitor(bitand(b, c), bitand(b, d)), bitand(c, d));
|
||||
k = uint32(2400959708);
|
||||
elseif(i >= 61 && i <= 80)
|
||||
f = bitxor(bitxor(b, c), d);
|
||||
k = uint32(3395469782);
|
||||
end
|
||||
|
||||
t = bitrotate(a, 5);
|
||||
t = bitadd(t, f);
|
||||
t = bitadd(t, e);
|
||||
t = bitadd(t, k);
|
||||
t = bitadd(t, ch(i));
|
||||
e = d;
|
||||
d = c;
|
||||
c = bitrotate(b, 30);
|
||||
b = a;
|
||||
a = t;
|
||||
|
||||
end
|
||||
h0 = bitadd(h0, a);
|
||||
h1 = bitadd(h1, b);
|
||||
h2 = bitadd(h2, c);
|
||||
h3 = bitadd(h3, d);
|
||||
h4 = bitadd(h4, e);
|
||||
|
||||
end
|
||||
|
||||
hash = reshape(dec2hex(double([h0 h1 h2 h3 h4]), 8)', [1 40]);
|
||||
|
||||
hash = lower(hash);
|
||||
|
||||
end
|
||||
|
||||
function ret = bitadd(iA, iB)
|
||||
ret = double(iA) + double(iB);
|
||||
ret = bitset(ret, 33, 0);
|
||||
ret = uint32(ret);
|
||||
end
|
||||
|
||||
function ret = bitrotate(iA, places)
|
||||
t = bitshift(iA, places - 32);
|
||||
ret = bitshift(iA, places);
|
||||
ret = bitor(ret, t);
|
||||
end
|
||||
|
||||
% =========================== Base64 Encoder ============================
|
||||
% Thanks to Peter John Acklam
|
||||
%
|
||||
|
||||
function y = base64encode(x, eol)
|
||||
%BASE64ENCODE Perform base64 encoding on a string.
|
||||
%
|
||||
% BASE64ENCODE(STR, EOL) encode the given string STR. EOL is the line ending
|
||||
% sequence to use; it is optional and defaults to '\n' (ASCII decimal 10).
|
||||
% The returned encoded string is broken into lines of no more than 76
|
||||
% characters each, and each line will end with EOL unless it is empty. Let
|
||||
% EOL be empty if you do not want the encoded string broken into lines.
|
||||
%
|
||||
% STR and EOL don't have to be strings (i.e., char arrays). The only
|
||||
% requirement is that they are vectors containing values in the range 0-255.
|
||||
%
|
||||
% This function may be used to encode strings into the Base64 encoding
|
||||
% specified in RFC 2045 - MIME (Multipurpose Internet Mail Extensions). The
|
||||
% Base64 encoding is designed to represent arbitrary sequences of octets in a
|
||||
% form that need not be humanly readable. A 65-character subset
|
||||
% ([A-Za-z0-9+/=]) of US-ASCII is used, enabling 6 bits to be represented per
|
||||
% printable character.
|
||||
%
|
||||
% Examples
|
||||
% --------
|
||||
%
|
||||
% If you want to encode a large file, you should encode it in chunks that are
|
||||
% a multiple of 57 bytes. This ensures that the base64 lines line up and
|
||||
% that you do not end up with padding in the middle. 57 bytes of data fills
|
||||
% one complete base64 line (76 == 57*4/3):
|
||||
%
|
||||
% If ifid and ofid are two file identifiers opened for reading and writing,
|
||||
% respectively, then you can base64 encode the data with
|
||||
%
|
||||
% while ~feof(ifid)
|
||||
% fwrite(ofid, base64encode(fread(ifid, 60*57)));
|
||||
% end
|
||||
%
|
||||
% or, if you have enough memory,
|
||||
%
|
||||
% fwrite(ofid, base64encode(fread(ifid)));
|
||||
%
|
||||
% See also BASE64DECODE.
|
||||
|
||||
% Author: Peter John Acklam
|
||||
% Time-stamp: 2004-02-03 21:36:56 +0100
|
||||
% E-mail: pjacklam@online.no
|
||||
% URL: http://home.online.no/~pjacklam
|
||||
|
||||
if isnumeric(x)
|
||||
x = num2str(x);
|
||||
end
|
||||
|
||||
% make sure we have the EOL value
|
||||
if nargin < 2
|
||||
eol = sprintf('\n');
|
||||
else
|
||||
if sum(size(eol) > 1) > 1
|
||||
error('EOL must be a vector.');
|
||||
end
|
||||
if any(eol(:) > 255)
|
||||
error('EOL can not contain values larger than 255.');
|
||||
end
|
||||
end
|
||||
|
||||
if sum(size(x) > 1) > 1
|
||||
error('STR must be a vector.');
|
||||
end
|
||||
|
||||
x = uint8(x);
|
||||
eol = uint8(eol);
|
||||
|
||||
ndbytes = length(x); % number of decoded bytes
|
||||
nchunks = ceil(ndbytes / 3); % number of chunks/groups
|
||||
nebytes = 4 * nchunks; % number of encoded bytes
|
||||
|
||||
% add padding if necessary, to make the length of x a multiple of 3
|
||||
if rem(ndbytes, 3)
|
||||
x(end+1 : 3*nchunks) = 0;
|
||||
end
|
||||
|
||||
x = reshape(x, [3, nchunks]); % reshape the data
|
||||
y = repmat(uint8(0), 4, nchunks); % for the encoded data
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% Split up every 3 bytes into 4 pieces
|
||||
%
|
||||
% aaaaaabb bbbbcccc ccdddddd
|
||||
%
|
||||
% to form
|
||||
%
|
||||
% 00aaaaaa 00bbbbbb 00cccccc 00dddddd
|
||||
%
|
||||
y(1,:) = bitshift(x(1,:), -2); % 6 highest bits of x(1,:)
|
||||
|
||||
y(2,:) = bitshift(bitand(x(1,:), 3), 4); % 2 lowest bits of x(1,:)
|
||||
y(2,:) = bitor(y(2,:), bitshift(x(2,:), -4)); % 4 highest bits of x(2,:)
|
||||
|
||||
y(3,:) = bitshift(bitand(x(2,:), 15), 2); % 4 lowest bits of x(2,:)
|
||||
y(3,:) = bitor(y(3,:), bitshift(x(3,:), -6)); % 2 highest bits of x(3,:)
|
||||
|
||||
y(4,:) = bitand(x(3,:), 63); % 6 lowest bits of x(3,:)
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% Now perform the following mapping
|
||||
%
|
||||
% 0 - 25 -> A-Z
|
||||
% 26 - 51 -> a-z
|
||||
% 52 - 61 -> 0-9
|
||||
% 62 -> +
|
||||
% 63 -> /
|
||||
%
|
||||
% We could use a mapping vector like
|
||||
%
|
||||
% ['A':'Z', 'a':'z', '0':'9', '+/']
|
||||
%
|
||||
% but that would require an index vector of class double.
|
||||
%
|
||||
z = repmat(uint8(0), size(y));
|
||||
i = y <= 25; z(i) = 'A' + double(y(i));
|
||||
i = 26 <= y & y <= 51; z(i) = 'a' - 26 + double(y(i));
|
||||
i = 52 <= y & y <= 61; z(i) = '0' - 52 + double(y(i));
|
||||
i = y == 62; z(i) = '+';
|
||||
i = y == 63; z(i) = '/';
|
||||
y = z;
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% Add padding if necessary.
|
||||
%
|
||||
npbytes = 3 * nchunks - ndbytes; % number of padding bytes
|
||||
if npbytes
|
||||
y(end-npbytes+1 : end) = '='; % '=' is used for padding
|
||||
end
|
||||
|
||||
if isempty(eol)
|
||||
|
||||
% reshape to a row vector
|
||||
y = reshape(y, [1, nebytes]);
|
||||
|
||||
else
|
||||
|
||||
nlines = ceil(nebytes / 76); % number of lines
|
||||
neolbytes = length(eol); % number of bytes in eol string
|
||||
|
||||
% pad data so it becomes a multiple of 76 elements
|
||||
y = [y(:) ; zeros(76 * nlines - numel(y), 1)];
|
||||
y(nebytes + 1 : 76 * nlines) = 0;
|
||||
y = reshape(y, 76, nlines);
|
||||
|
||||
% insert eol strings
|
||||
eol = eol(:);
|
||||
y(end + 1 : end + neolbytes, :) = eol(:, ones(1, nlines));
|
||||
|
||||
% remove padding, but keep the last eol string
|
||||
m = nebytes + neolbytes * (nlines - 1);
|
||||
n = (76+neolbytes)*nlines - neolbytes;
|
||||
y(m+1 : n) = '';
|
||||
|
||||
% extract and reshape to row vector
|
||||
y = reshape(y, 1, m+neolbytes);
|
||||
|
||||
end
|
||||
|
||||
% output is a character array
|
||||
y = char(y);
|
||||
|
||||
end
|
||||
@@ -0,0 +1,20 @@
|
||||
% submitWeb Creates files from your code and output for web submission.
|
||||
%
|
||||
% If the submit function does not work for you, use the web-submission mechanism.
|
||||
% Call this function to produce a file for the part you wish to submit. Then,
|
||||
% submit the file to the class servers using the "Web Submission" button on the
|
||||
% Programming Exercises page on the course website.
|
||||
%
|
||||
% You should call this function without arguments (submitWeb), to receive
|
||||
% an interactive prompt for submission; optionally you can call it with the partID
|
||||
% if you so wish. Make sure your working directory is set to the directory
|
||||
% containing the submitWeb.m file and your assignment files.
|
||||
|
||||
function submitWeb(partId)
|
||||
if ~exist('partId', 'var') || isempty(partId)
|
||||
partId = [];
|
||||
end
|
||||
|
||||
submit(partId, 1);
|
||||
end
|
||||
|
||||
BIN
machine_learning/course1/mlclass-ex5-008/ex5.pdf
Normal file
BIN
machine_learning/course1/mlclass-ex5-008/ex5.pdf
Normal file
Binary file not shown.
220
machine_learning/course1/mlclass-ex5-008/mlclass-ex5/ex5.m
Normal file
220
machine_learning/course1/mlclass-ex5-008/mlclass-ex5/ex5.m
Normal file
@@ -0,0 +1,220 @@
|
||||
%% Machine Learning Online Class
|
||||
% Exercise 5 | Regularized Linear Regression and Bias-Variance
|
||||
%
|
||||
% Instructions
|
||||
% ------------
|
||||
%
|
||||
% This file contains code that helps you get started on the
|
||||
% exercise. You will need to complete the following functions:
|
||||
%
|
||||
% linearRegCostFunction.m
|
||||
% learningCurve.m
|
||||
% validationCurve.m
|
||||
%
|
||||
% For this exercise, you will not need to change any code in this file,
|
||||
% or any other files other than those mentioned above.
|
||||
%
|
||||
|
||||
%% Initialization
|
||||
%clear ; close all; clc
|
||||
|
||||
%% =========== Part 1: Loading and Visualizing Data =============
|
||||
% We start the exercise by first loading and visualizing the dataset.
|
||||
% The following code will load the dataset into your environment and plot
|
||||
% the data.
|
||||
%
|
||||
|
||||
% Load Training Data
|
||||
fprintf('Loading and Visualizing Data ...\n')
|
||||
|
||||
% Load from ex5data1:
|
||||
% You will have X, y, Xval, yval, Xtest, ytest in your environment
|
||||
load ('ex5data1.mat');
|
||||
|
||||
% m = Number of examples
|
||||
m = size(X, 1);
|
||||
|
||||
% Plot training data
|
||||
%plot(X, y, 'rx', 'MarkerSize', 10, 'LineWidth', 1.5);
|
||||
%xlabel('Change in water level (x)');
|
||||
%ylabel('Water flowing out of the dam (y)');
|
||||
|
||||
%fprintf('Program paused. Press enter to continue.\n');
|
||||
%pause;
|
||||
|
||||
%% =========== Part 2: Regularized Linear Regression Cost =============
|
||||
% You should now implement the cost function for regularized linear
|
||||
% regression.
|
||||
%
|
||||
|
||||
theta = [1 ; 1];
|
||||
J = linearRegCostFunction([ones(m, 1) X], y, theta, 1);
|
||||
|
||||
fprintf(['Cost at theta = [1 ; 1]: %f '...
|
||||
'\n(this value should be about 303.993192)\n'], J);
|
||||
|
||||
fprintf('Program paused. Press enter to continue.\n');
|
||||
pause;
|
||||
|
||||
%% =========== Part 3: Regularized Linear Regression Gradient =============
|
||||
% You should now implement the gradient for regularized linear
|
||||
% regression.
|
||||
%
|
||||
|
||||
theta = [1 ; 1];
|
||||
[J, grad] = linearRegCostFunction([ones(m, 1) X], y, theta, 1);
|
||||
|
||||
fprintf(['Gradient at theta = [1 ; 1]: [%f; %f] '...
|
||||
'\n(this value should be about [-15.303016; 598.250744])\n'], ...
|
||||
grad(1), grad(2));
|
||||
|
||||
fprintf('Program paused. Press enter to continue.\n');
|
||||
pause;
|
||||
|
||||
|
||||
%% =========== Part 4: Train Linear Regression =============
|
||||
% Once you have implemented the cost and gradient correctly, the
|
||||
% trainLinearReg function will use your cost function to train
|
||||
% regularized linear regression.
|
||||
%
|
||||
% Write Up Note: The data is non-linear, so this will not give a great
|
||||
% fit.
|
||||
%
|
||||
|
||||
% Train linear regression with lambda = 0
|
||||
lambda = 0;
|
||||
[theta] = trainLinearReg([ones(m, 1) X], y, lambda);
|
||||
|
||||
% Plot fit over the data
|
||||
%plot(X, y, 'rx', 'MarkerSize', 10, 'LineWidth', 1.5);
|
||||
%xlabel('Change in water level (x)');
|
||||
%ylabel('Water flowing out of the dam (y)');
|
||||
%hold on;
|
||||
%plot(X, [ones(m, 1) X]*theta, '--', 'LineWidth', 2)
|
||||
%hold off;
|
||||
|
||||
fprintf('Program paused. Press enter to continue.\n');
|
||||
%pause;
|
||||
|
||||
|
||||
%% =========== Part 5: Learning Curve for Linear Regression =============
|
||||
% Next, you should implement the learningCurve function.
|
||||
%
|
||||
% Write Up Note: Since the model is underfitting the data, we expect to
|
||||
% see a graph with "high bias" -- slide 8 in ML-advice.pdf
|
||||
%
|
||||
|
||||
lambda = 0;
|
||||
[error_train, error_val] = ...
|
||||
learningCurve([ones(m, 1) X], y, ...
|
||||
[ones(size(Xval, 1), 1) Xval], yval, ...
|
||||
lambda);
|
||||
|
||||
%plot(1:m, error_train, 1:m, error_val);
|
||||
%title('Learning curve for linear regression')
|
||||
%legend('Train', 'Cross Validation')
|
||||
%xlabel('Number of training examples')
|
||||
%ylabel('Error')
|
||||
%axis([0 13 0 150])
|
||||
|
||||
fprintf('# Training Examples\tTrain Error\tCross Validation Error\n');
|
||||
for i = 1:m
|
||||
fprintf(' \t%d\t\t%f\t%f\n', i, error_train(i), error_val(i));
|
||||
end
|
||||
|
||||
fprintf('Program paused. Press enter to continue.\n');
|
||||
pause;
|
||||
|
||||
%% =========== Part 6: Feature Mapping for Polynomial Regression =============
|
||||
% One solution to this is to use polynomial regression. You should now
|
||||
% complete polyFeatures to map each example into its powers
|
||||
%
|
||||
|
||||
p = 8;
|
||||
|
||||
% Map X onto Polynomial Features and Normalize
|
||||
X_poly = polyFeatures(X, p);
|
||||
[X_poly, mu, sigma] = featureNormalize(X_poly); % Normalize
|
||||
X_poly = [ones(m, 1), X_poly]; % Add Ones
|
||||
|
||||
% Map X_poly_test and normalize (using mu and sigma)
|
||||
X_poly_test = polyFeatures(Xtest, p);
|
||||
X_poly_test = bsxfun(@minus, X_poly_test, mu);
|
||||
X_poly_test = bsxfun(@rdivide, X_poly_test, sigma);
|
||||
X_poly_test = [ones(size(X_poly_test, 1), 1), X_poly_test]; % Add Ones
|
||||
|
||||
% Map X_poly_val and normalize (using mu and sigma)
|
||||
X_poly_val = polyFeatures(Xval, p);
|
||||
X_poly_val = bsxfun(@minus, X_poly_val, mu);
|
||||
X_poly_val = bsxfun(@rdivide, X_poly_val, sigma);
|
||||
X_poly_val = [ones(size(X_poly_val, 1), 1), X_poly_val]; % Add Ones
|
||||
|
||||
fprintf('Normalized Training Example 1:\n');
|
||||
fprintf(' %f \n', X_poly(1, :));
|
||||
|
||||
fprintf('\nProgram paused. Press enter to continue.\n');
|
||||
pause;
|
||||
|
||||
|
||||
|
||||
%% =========== Part 7: Learning Curve for Polynomial Regression =============
|
||||
% Now, you will get to experiment with polynomial regression with multiple
|
||||
% values of lambda. The code below runs polynomial regression with
|
||||
% lambda = 0. You should try running the code with different values of
|
||||
% lambda to see how the fit and learning curve change.
|
||||
%
|
||||
|
||||
lambda = 0;
|
||||
[theta] = trainLinearReg(X_poly, y, lambda);
|
||||
|
||||
% Plot training data and fit
|
||||
%figure(1);
|
||||
%plot(X, y, 'rx', 'MarkerSize', 10, 'LineWidth', 1.5);
|
||||
%plotFit(min(X), max(X), mu, sigma, theta, p);
|
||||
%xlabel('Change in water level (x)');
|
||||
%ylabel('Water flowing out of the dam (y)');
|
||||
%title (sprintf('Polynomial Regression Fit (lambda = %f)', lambda));
|
||||
|
||||
figure(2);
|
||||
[error_train, error_val] = ...
|
||||
learningCurve(X_poly, y, X_poly_val, yval, lambda);
|
||||
%plot(1:m, error_train, 1:m, error_val);
|
||||
|
||||
%title(sprintf('Polynomial Regression Learning Curve (lambda = %f)', lambda));
|
||||
%xlabel('Number of training examples')
|
||||
%ylabel('Error')
|
||||
%axis([0 13 0 100])
|
||||
%legend('Train', 'Cross Validation')
|
||||
|
||||
fprintf('Polynomial Regression (lambda = %f)\n\n', lambda);
|
||||
fprintf('# Training Examples\tTrain Error\tCross Validation Error\n');
|
||||
for i = 1:m
|
||||
fprintf(' \t%d\t\t%f\t%f\n', i, error_train(i), error_val(i));
|
||||
end
|
||||
|
||||
fprintf('Program paused. Press enter to continue.\n');
|
||||
pause;
|
||||
|
||||
%% =========== Part 8: Validation for Selecting Lambda =============
|
||||
% You will now implement validationCurve to test various values of
|
||||
% lambda on a validation set. You will then use this to select the
|
||||
% "best" lambda value.
|
||||
%
|
||||
|
||||
[lambda_vec, error_train, error_val] = ...
|
||||
validationCurve(X_poly, y, X_poly_val, yval);
|
||||
|
||||
%close all;
|
||||
%plot(lambda_vec, error_train, lambda_vec, error_val);
|
||||
%legend('Train', 'Cross Validation');
|
||||
%xlabel('lambda');
|
||||
%ylabel('Error');
|
||||
|
||||
fprintf('lambda\t\tTrain Error\tValidation Error\n');
|
||||
for i = 1:length(lambda_vec)
|
||||
fprintf(' %f\t%f\t%f\n', ...
|
||||
lambda_vec(i), error_train(i), error_val(i));
|
||||
end
|
||||
|
||||
fprintf('Program paused. Press enter to continue.\n');
|
||||
pause;
|
||||
Binary file not shown.
@@ -0,0 +1,17 @@
|
||||
function [X_norm, mu, sigma] = featureNormalize(X)
|
||||
%FEATURENORMALIZE Normalizes the features in X
|
||||
% FEATURENORMALIZE(X) returns a normalized version of X where
|
||||
% the mean value of each feature is 0 and the standard deviation
|
||||
% is 1. This is often a good preprocessing step to do when
|
||||
% working with learning algorithms.
|
||||
|
||||
mu = mean(X);
|
||||
X_norm = bsxfun(@minus, X, mu);
|
||||
|
||||
sigma = std(X_norm);
|
||||
X_norm = bsxfun(@rdivide, X_norm, sigma);
|
||||
|
||||
|
||||
% ============================================================
|
||||
|
||||
end
|
||||
175
machine_learning/course1/mlclass-ex5-008/mlclass-ex5/fmincg.m
Normal file
175
machine_learning/course1/mlclass-ex5-008/mlclass-ex5/fmincg.m
Normal file
@@ -0,0 +1,175 @@
|
||||
function [X, fX, i] = fmincg(f, X, options, P1, P2, P3, P4, P5)
|
||||
% Minimize a continuous differentialble multivariate function. Starting point
|
||||
% is given by "X" (D by 1), and the function named in the string "f", must
|
||||
% return a function value and a vector of partial derivatives. The Polack-
|
||||
% Ribiere flavour of conjugate gradients is used to compute search directions,
|
||||
% and a line search using quadratic and cubic polynomial approximations and the
|
||||
% Wolfe-Powell stopping criteria is used together with the slope ratio method
|
||||
% for guessing initial step sizes. Additionally a bunch of checks are made to
|
||||
% make sure that exploration is taking place and that extrapolation will not
|
||||
% be unboundedly large. The "length" gives the length of the run: if it is
|
||||
% positive, it gives the maximum number of line searches, if negative its
|
||||
% absolute gives the maximum allowed number of function evaluations. You can
|
||||
% (optionally) give "length" a second component, which will indicate the
|
||||
% reduction in function value to be expected in the first line-search (defaults
|
||||
% to 1.0). The function returns when either its length is up, or if no further
|
||||
% progress can be made (ie, we are at a minimum, or so close that due to
|
||||
% numerical problems, we cannot get any closer). If the function terminates
|
||||
% within a few iterations, it could be an indication that the function value
|
||||
% and derivatives are not consistent (ie, there may be a bug in the
|
||||
% implementation of your "f" function). The function returns the found
|
||||
% solution "X", a vector of function values "fX" indicating the progress made
|
||||
% and "i" the number of iterations (line searches or function evaluations,
|
||||
% depending on the sign of "length") used.
|
||||
%
|
||||
% Usage: [X, fX, i] = fmincg(f, X, options, P1, P2, P3, P4, P5)
|
||||
%
|
||||
% See also: checkgrad
|
||||
%
|
||||
% Copyright (C) 2001 and 2002 by Carl Edward Rasmussen. Date 2002-02-13
|
||||
%
|
||||
%
|
||||
% (C) Copyright 1999, 2000 & 2001, Carl Edward Rasmussen
|
||||
%
|
||||
% Permission is granted for anyone to copy, use, or modify these
|
||||
% programs and accompanying documents for purposes of research or
|
||||
% education, provided this copyright notice is retained, and note is
|
||||
% made of any changes that have been made.
|
||||
%
|
||||
% These programs and documents are distributed without any warranty,
|
||||
% express or implied. As the programs were written for research
|
||||
% purposes only, they have not been tested to the degree that would be
|
||||
% advisable in any important application. All use of these programs is
|
||||
% entirely at the user's own risk.
|
||||
%
|
||||
% [ml-class] Changes Made:
|
||||
% 1) Function name and argument specifications
|
||||
% 2) Output display
|
||||
%
|
||||
|
||||
% Read options
|
||||
if exist('options', 'var') && ~isempty(options) && isfield(options, 'MaxIter')
|
||||
length = options.MaxIter;
|
||||
else
|
||||
length = 100;
|
||||
end
|
||||
|
||||
|
||||
RHO = 0.01; % a bunch of constants for line searches
|
||||
SIG = 0.5; % RHO and SIG are the constants in the Wolfe-Powell conditions
|
||||
INT = 0.1; % don't reevaluate within 0.1 of the limit of the current bracket
|
||||
EXT = 3.0; % extrapolate maximum 3 times the current bracket
|
||||
MAX = 20; % max 20 function evaluations per line search
|
||||
RATIO = 100; % maximum allowed slope ratio
|
||||
|
||||
argstr = ['feval(f, X']; % compose string used to call function
|
||||
for i = 1:(nargin - 3)
|
||||
argstr = [argstr, ',P', int2str(i)];
|
||||
end
|
||||
argstr = [argstr, ')'];
|
||||
|
||||
if max(size(length)) == 2, red=length(2); length=length(1); else red=1; end
|
||||
S=['Iteration '];
|
||||
|
||||
i = 0; % zero the run length counter
|
||||
ls_failed = 0; % no previous line search has failed
|
||||
fX = [];
|
||||
[f1 df1] = eval(argstr); % get function value and gradient
|
||||
i = i + (length<0); % count epochs?!
|
||||
s = -df1; % search direction is steepest
|
||||
d1 = -s'*s; % this is the slope
|
||||
z1 = red/(1-d1); % initial step is red/(|s|+1)
|
||||
|
||||
while i < abs(length) % while not finished
|
||||
i = i + (length>0); % count iterations?!
|
||||
|
||||
X0 = X; f0 = f1; df0 = df1; % make a copy of current values
|
||||
X = X + z1*s; % begin line search
|
||||
[f2 df2] = eval(argstr);
|
||||
i = i + (length<0); % count epochs?!
|
||||
d2 = df2'*s;
|
||||
f3 = f1; d3 = d1; z3 = -z1; % initialize point 3 equal to point 1
|
||||
if length>0, M = MAX; else M = min(MAX, -length-i); end
|
||||
success = 0; limit = -1; % initialize quanteties
|
||||
while 1
|
||||
while ((f2 > f1+z1*RHO*d1) | (d2 > -SIG*d1)) & (M > 0)
|
||||
limit = z1; % tighten the bracket
|
||||
if f2 > f1
|
||||
z2 = z3 - (0.5*d3*z3*z3)/(d3*z3+f2-f3); % quadratic fit
|
||||
else
|
||||
A = 6*(f2-f3)/z3+3*(d2+d3); % cubic fit
|
||||
B = 3*(f3-f2)-z3*(d3+2*d2);
|
||||
z2 = (sqrt(B*B-A*d2*z3*z3)-B)/A; % numerical error possible - ok!
|
||||
end
|
||||
if isnan(z2) | isinf(z2)
|
||||
z2 = z3/2; % if we had a numerical problem then bisect
|
||||
end
|
||||
z2 = max(min(z2, INT*z3),(1-INT)*z3); % don't accept too close to limits
|
||||
z1 = z1 + z2; % update the step
|
||||
X = X + z2*s;
|
||||
[f2 df2] = eval(argstr);
|
||||
M = M - 1; i = i + (length<0); % count epochs?!
|
||||
d2 = df2'*s;
|
||||
z3 = z3-z2; % z3 is now relative to the location of z2
|
||||
end
|
||||
if f2 > f1+z1*RHO*d1 | d2 > -SIG*d1
|
||||
break; % this is a failure
|
||||
elseif d2 > SIG*d1
|
||||
success = 1; break; % success
|
||||
elseif M == 0
|
||||
break; % failure
|
||||
end
|
||||
A = 6*(f2-f3)/z3+3*(d2+d3); % make cubic extrapolation
|
||||
B = 3*(f3-f2)-z3*(d3+2*d2);
|
||||
z2 = -d2*z3*z3/(B+sqrt(B*B-A*d2*z3*z3)); % num. error possible - ok!
|
||||
if ~isreal(z2) | isnan(z2) | isinf(z2) | z2 < 0 % num prob or wrong sign?
|
||||
if limit < -0.5 % if we have no upper limit
|
||||
z2 = z1 * (EXT-1); % the extrapolate the maximum amount
|
||||
else
|
||||
z2 = (limit-z1)/2; % otherwise bisect
|
||||
end
|
||||
elseif (limit > -0.5) & (z2+z1 > limit) % extraplation beyond max?
|
||||
z2 = (limit-z1)/2; % bisect
|
||||
elseif (limit < -0.5) & (z2+z1 > z1*EXT) % extrapolation beyond limit
|
||||
z2 = z1*(EXT-1.0); % set to extrapolation limit
|
||||
elseif z2 < -z3*INT
|
||||
z2 = -z3*INT;
|
||||
elseif (limit > -0.5) & (z2 < (limit-z1)*(1.0-INT)) % too close to limit?
|
||||
z2 = (limit-z1)*(1.0-INT);
|
||||
end
|
||||
f3 = f2; d3 = d2; z3 = -z2; % set point 3 equal to point 2
|
||||
z1 = z1 + z2; X = X + z2*s; % update current estimates
|
||||
[f2 df2] = eval(argstr);
|
||||
M = M - 1; i = i + (length<0); % count epochs?!
|
||||
d2 = df2'*s;
|
||||
end % end of line search
|
||||
|
||||
if success % if line search succeeded
|
||||
f1 = f2; fX = [fX' f1]';
|
||||
fprintf('%s %4i | Cost: %4.6e\r', S, i, f1);
|
||||
s = (df2'*df2-df1'*df2)/(df1'*df1)*s - df2; % Polack-Ribiere direction
|
||||
tmp = df1; df1 = df2; df2 = tmp; % swap derivatives
|
||||
d2 = df1'*s;
|
||||
if d2 > 0 % new slope must be negative
|
||||
s = -df1; % otherwise use steepest direction
|
||||
d2 = -s'*s;
|
||||
end
|
||||
z1 = z1 * min(RATIO, d1/(d2-realmin)); % slope ratio but max RATIO
|
||||
d1 = d2;
|
||||
ls_failed = 0; % this line search did not fail
|
||||
else
|
||||
X = X0; f1 = f0; df1 = df0; % restore point from before failed line search
|
||||
if ls_failed | i > abs(length) % line search failed twice in a row
|
||||
break; % or we ran out of time, so we give up
|
||||
end
|
||||
tmp = df1; df1 = df2; df2 = tmp; % swap derivatives
|
||||
s = -df1; % try steepest
|
||||
d1 = -s'*s;
|
||||
z1 = 1/(1-d1);
|
||||
ls_failed = 1; % this line search failed
|
||||
end
|
||||
if exist('OCTAVE_VERSION')
|
||||
fflush(stdout);
|
||||
end
|
||||
end
|
||||
fprintf('\n');
|
||||
@@ -0,0 +1,67 @@
|
||||
function [error_train, error_val] = ...
|
||||
learningCurve(X, y, Xval, yval, lambda)
|
||||
%LEARNINGCURVE Generates the train and cross validation set errors needed
|
||||
%to plot a learning curve
|
||||
% [error_train, error_val] = ...
|
||||
% LEARNINGCURVE(X, y, Xval, yval, lambda) returns the train and
|
||||
% cross validation set errors for a learning curve. In particular,
|
||||
% it returns two vectors of the same length - error_train and
|
||||
% error_val. Then, error_train(i) contains the training error for
|
||||
% i examples (and similarly for error_val(i)).
|
||||
%
|
||||
% In this function, you will compute the train and test errors for
|
||||
% dataset sizes from 1 up to m. In practice, when working with larger
|
||||
% datasets, you might want to do this in larger intervals.
|
||||
%
|
||||
|
||||
% Number of training examples
|
||||
m = size(X, 1);
|
||||
|
||||
% You need to return these values correctly
|
||||
error_train = zeros(m, 1);
|
||||
error_val = zeros(m, 1);
|
||||
|
||||
% ====================== YOUR CODE HERE ======================
|
||||
% Instructions: Fill in this function to return training errors in
|
||||
% error_train and the cross validation errors in error_val.
|
||||
% i.e., error_train(i) and
|
||||
% error_val(i) should give you the errors
|
||||
% obtained after training on i examples.
|
||||
%
|
||||
% Note: You should evaluate the training error on the first i training
|
||||
% examples (i.e., X(1:i, :) and y(1:i)).
|
||||
%
|
||||
% For the cross-validation error, you should instead evaluate on
|
||||
% the _entire_ cross validation set (Xval and yval).
|
||||
%
|
||||
% Note: If you are using your cost function (linearRegCostFunction)
|
||||
% to compute the training and cross validation error, you should
|
||||
% call the function with the lambda argument set to 0.
|
||||
% Do note that you will still need to use lambda when running
|
||||
% the training to obtain the theta parameters.
|
||||
%
|
||||
% Hint: You can loop over the examples with the following:
|
||||
%
|
||||
% for i = 1:m
|
||||
% % Compute train/cross validation errors using training examples
|
||||
% % X(1:i, :) and y(1:i), storing the result in
|
||||
% % error_train(i) and error_val(i)
|
||||
% ....
|
||||
%
|
||||
% end
|
||||
%
|
||||
|
||||
% ---------------------- Sample Solution ----------------------
|
||||
mval = size(Xval,1);
|
||||
|
||||
for i = 1:m
|
||||
theta = trainLinearReg(X(1:i,:), y(1:i), lambda);
|
||||
error_train(i) = sum( (X(1:i,:)*theta - y(1:i)) .^ 2 ) / (2*i);
|
||||
error_val(i) = sum( (Xval*theta - yval) .^ 2 ) / (2*mval);
|
||||
end
|
||||
|
||||
% -------------------------------------------------------------
|
||||
|
||||
% =========================================================================
|
||||
|
||||
end
|
||||
@@ -0,0 +1,33 @@
|
||||
function [J, grad] = linearRegCostFunction(X, y, theta, lambda)
|
||||
%LINEARREGCOSTFUNCTION Compute cost and gradient for regularized linear
|
||||
%regression with multiple variables
|
||||
% [J, grad] = LINEARREGCOSTFUNCTION(X, y, theta, lambda) computes the
|
||||
% cost of using theta as the parameter for linear regression to fit the
|
||||
% data points in X and y. Returns the cost in J and the gradient in grad
|
||||
|
||||
% Initialize some useful values
|
||||
m = length(y); % number of training examples
|
||||
|
||||
% You need to return the following variables correctly
|
||||
J = 0;
|
||||
grad = zeros(size(theta));
|
||||
|
||||
% ====================== YOUR CODE HERE ======================
|
||||
% Instructions: Compute the cost and gradient of regularized linear
|
||||
% regression for a particular choice of theta.
|
||||
%
|
||||
% You should set J to the cost and grad to the gradient.
|
||||
%
|
||||
|
||||
reg = theta;
|
||||
reg(1) = 0;
|
||||
|
||||
J = sum( (X*theta - y) .^ 2 ) / (2*m) + (lambda/(2*m))*sum(reg.^2);
|
||||
grad = (X' * (X*theta-y) / m) + (lambda/m) * reg;
|
||||
|
||||
|
||||
% =========================================================================
|
||||
|
||||
grad = grad(:);
|
||||
|
||||
end
|
||||
@@ -0,0 +1,28 @@
|
||||
function plotFit(min_x, max_x, mu, sigma, theta, p)
|
||||
%PLOTFIT Plots a learned polynomial regression fit over an existing figure.
|
||||
%Also works with linear regression.
|
||||
% PLOTFIT(min_x, max_x, mu, sigma, theta, p) plots the learned polynomial
|
||||
% fit with power p and feature normalization (mu, sigma).
|
||||
|
||||
% Hold on to the current figure
|
||||
hold on;
|
||||
|
||||
% We plot a range slightly bigger than the min and max values to get
|
||||
% an idea of how the fit will vary outside the range of the data points
|
||||
x = (min_x - 15: 0.05 : max_x + 25)';
|
||||
|
||||
% Map the X values
|
||||
X_poly = polyFeatures(x, p);
|
||||
X_poly = bsxfun(@minus, X_poly, mu);
|
||||
X_poly = bsxfun(@rdivide, X_poly, sigma);
|
||||
|
||||
% Add ones
|
||||
X_poly = [ones(size(x, 1), 1) X_poly];
|
||||
|
||||
% Plot
|
||||
plot(x, X_poly * theta, '--', 'LineWidth', 2)
|
||||
|
||||
% Hold off to the current figure
|
||||
hold off
|
||||
|
||||
end
|
||||
@@ -0,0 +1,26 @@
|
||||
function [X_poly] = polyFeatures(X, p)
|
||||
%POLYFEATURES Maps X (1D vector) into the p-th power
|
||||
% [X_poly] = POLYFEATURES(X, p) takes a data matrix X (size m x 1) and
|
||||
% maps each example into its polynomial features where
|
||||
% X_poly(i, :) = [X(i) X(i).^2 X(i).^3 ... X(i).^p];
|
||||
%
|
||||
|
||||
|
||||
% You need to return the following variables correctly.
|
||||
X_poly = zeros(numel(X), p);
|
||||
|
||||
% ====================== YOUR CODE HERE ======================
|
||||
% Instructions: Given a vector X, return a matrix X_poly where the p-th
|
||||
% column of X contains the values of X to the p-th power.
|
||||
%
|
||||
%
|
||||
|
||||
X_poly(:,1) = X;
|
||||
for i = 2:p
|
||||
X_poly(:,i) = X_poly(:,i-1).*X;
|
||||
end
|
||||
|
||||
|
||||
% =========================================================================
|
||||
|
||||
end
|
||||
577
machine_learning/course1/mlclass-ex5-008/mlclass-ex5/submit.m
Normal file
577
machine_learning/course1/mlclass-ex5-008/mlclass-ex5/submit.m
Normal file
@@ -0,0 +1,577 @@
|
||||
function submit(partId, webSubmit)
|
||||
%SUBMIT Submit your code and output to the ml-class servers
|
||||
% SUBMIT() will connect to the ml-class server and submit your solution
|
||||
|
||||
fprintf('==\n== [ml-class] Submitting Solutions | Programming Exercise %s\n==\n', ...
|
||||
homework_id());
|
||||
if ~exist('partId', 'var') || isempty(partId)
|
||||
partId = promptPart();
|
||||
end
|
||||
|
||||
if ~exist('webSubmit', 'var') || isempty(webSubmit)
|
||||
webSubmit = 0; % submit directly by default
|
||||
end
|
||||
|
||||
% Check valid partId
|
||||
partNames = validParts();
|
||||
if ~isValidPartId(partId)
|
||||
fprintf('!! Invalid homework part selected.\n');
|
||||
fprintf('!! Expected an integer from 1 to %d.\n', numel(partNames) + 1);
|
||||
fprintf('!! Submission Cancelled\n');
|
||||
return
|
||||
end
|
||||
|
||||
if ~exist('ml_login_data.mat','file')
|
||||
[login password] = loginPrompt();
|
||||
save('ml_login_data.mat','login','password');
|
||||
else
|
||||
load('ml_login_data.mat');
|
||||
[login password] = quickLogin(login, password);
|
||||
save('ml_login_data.mat','login','password');
|
||||
end
|
||||
|
||||
if isempty(login)
|
||||
fprintf('!! Submission Cancelled\n');
|
||||
return
|
||||
end
|
||||
|
||||
fprintf('\n== Connecting to ml-class ... ');
|
||||
if exist('OCTAVE_VERSION')
|
||||
fflush(stdout);
|
||||
end
|
||||
|
||||
% Setup submit list
|
||||
if partId == numel(partNames) + 1
|
||||
submitParts = 1:numel(partNames);
|
||||
else
|
||||
submitParts = [partId];
|
||||
end
|
||||
|
||||
for s = 1:numel(submitParts)
|
||||
thisPartId = submitParts(s);
|
||||
if (~webSubmit) % submit directly to server
|
||||
[login, ch, signature, auxstring] = getChallenge(login, thisPartId);
|
||||
if isempty(login) || isempty(ch) || isempty(signature)
|
||||
% Some error occured, error string in first return element.
|
||||
fprintf('\n!! Error: %s\n\n', login);
|
||||
return
|
||||
end
|
||||
|
||||
% Attempt Submission with Challenge
|
||||
ch_resp = challengeResponse(login, password, ch);
|
||||
|
||||
[result, str] = submitSolution(login, ch_resp, thisPartId, ...
|
||||
output(thisPartId, auxstring), source(thisPartId), signature);
|
||||
|
||||
partName = partNames{thisPartId};
|
||||
|
||||
fprintf('\n== [ml-class] Submitted Assignment %s - Part %d - %s\n', ...
|
||||
homework_id(), thisPartId, partName);
|
||||
fprintf('== %s\n', strtrim(str));
|
||||
|
||||
if exist('OCTAVE_VERSION')
|
||||
fflush(stdout);
|
||||
end
|
||||
else
|
||||
[result] = submitSolutionWeb(login, thisPartId, output(thisPartId), ...
|
||||
source(thisPartId));
|
||||
result = base64encode(result);
|
||||
|
||||
fprintf('\nSave as submission file [submit_ex%s_part%d.txt (enter to accept default)]:', ...
|
||||
homework_id(), thisPartId);
|
||||
saveAsFile = input('', 's');
|
||||
if (isempty(saveAsFile))
|
||||
saveAsFile = sprintf('submit_ex%s_part%d.txt', homework_id(), thisPartId);
|
||||
end
|
||||
|
||||
fid = fopen(saveAsFile, 'w');
|
||||
if (fid)
|
||||
fwrite(fid, result);
|
||||
fclose(fid);
|
||||
fprintf('\nSaved your solutions to %s.\n\n', saveAsFile);
|
||||
fprintf(['You can now submit your solutions through the web \n' ...
|
||||
'form in the programming exercises. Select the corresponding \n' ...
|
||||
'programming exercise to access the form.\n']);
|
||||
|
||||
else
|
||||
fprintf('Unable to save to %s\n\n', saveAsFile);
|
||||
fprintf(['You can create a submission file by saving the \n' ...
|
||||
'following text in a file: (press enter to continue)\n\n']);
|
||||
pause;
|
||||
fprintf(result);
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
% ================== CONFIGURABLES FOR EACH HOMEWORK ==================
|
||||
|
||||
function id = homework_id()
|
||||
id = '5';
|
||||
end
|
||||
|
||||
function [partNames] = validParts()
|
||||
partNames = { 'Regularized Linear Regression Cost Function', ...
|
||||
'Regularized Linear Regression Gradient', ...
|
||||
'Learning Curve', ...
|
||||
'Polynomial Feature Mapping' ...
|
||||
'Validation Curve' ...
|
||||
};
|
||||
end
|
||||
|
||||
function srcs = sources()
|
||||
% Separated by part
|
||||
srcs = { { 'linearRegCostFunction.m' }, ...
|
||||
{ 'linearRegCostFunction.m' }, ...
|
||||
{ 'learningCurve.m' }, ...
|
||||
{ 'polyFeatures.m' }, ...
|
||||
{ 'validationCurve.m' } };
|
||||
end
|
||||
|
||||
function out = output(partId, auxstring)
|
||||
% Random Test Cases
|
||||
X = [ones(10,1) sin(1:1.5:15)' cos(1:1.5:15)'];
|
||||
y = sin(1:3:30)';
|
||||
Xval = [ones(10,1) sin(0:1.5:14)' cos(0:1.5:14)'];
|
||||
yval = sin(1:10)';
|
||||
if partId == 1
|
||||
[J] = linearRegCostFunction(X, y, [0.1 0.2 0.3]', 0.5);
|
||||
out = sprintf('%0.5f ', J);
|
||||
elseif partId == 2
|
||||
[J, grad] = linearRegCostFunction(X, y, [0.1 0.2 0.3]', 0.5);
|
||||
out = sprintf('%0.5f ', grad);
|
||||
elseif partId == 3
|
||||
[error_train, error_val] = ...
|
||||
learningCurve(X, y, Xval, yval, 1);
|
||||
out = sprintf('%0.5f ', [error_train(:); error_val(:)]);
|
||||
elseif partId == 4
|
||||
[X_poly] = polyFeatures(X(2,:)', 8);
|
||||
out = sprintf('%0.5f ', X_poly);
|
||||
elseif partId == 5
|
||||
[lambda_vec, error_train, error_val] = ...
|
||||
validationCurve(X, y, Xval, yval);
|
||||
out = sprintf('%0.5f ', ...
|
||||
[lambda_vec(:); error_train(:); error_val(:)]);
|
||||
end
|
||||
end
|
||||
|
||||
% ====================== SERVER CONFIGURATION ===========================
|
||||
|
||||
% ***************** REMOVE -staging WHEN YOU DEPLOY *********************
|
||||
function url = site_url()
|
||||
url = 'http://class.coursera.org/ml-008';
|
||||
end
|
||||
|
||||
function url = challenge_url()
|
||||
url = [site_url() '/assignment/challenge'];
|
||||
end
|
||||
|
||||
function url = submit_url()
|
||||
url = [site_url() '/assignment/submit'];
|
||||
end
|
||||
|
||||
% ========================= CHALLENGE HELPERS =========================
|
||||
|
||||
function src = source(partId)
|
||||
src = '';
|
||||
src_files = sources();
|
||||
if partId <= numel(src_files)
|
||||
flist = src_files{partId};
|
||||
for i = 1:numel(flist)
|
||||
fid = fopen(flist{i});
|
||||
if (fid == -1)
|
||||
error('Error opening %s (is it missing?)', flist{i});
|
||||
end
|
||||
line = fgets(fid);
|
||||
while ischar(line)
|
||||
src = [src line];
|
||||
line = fgets(fid);
|
||||
end
|
||||
fclose(fid);
|
||||
src = [src '||||||||'];
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
function ret = isValidPartId(partId)
|
||||
partNames = validParts();
|
||||
ret = (~isempty(partId)) && (partId >= 1) && (partId <= numel(partNames) + 1);
|
||||
end
|
||||
|
||||
function partId = promptPart()
|
||||
fprintf('== Select which part(s) to submit:\n');
|
||||
partNames = validParts();
|
||||
srcFiles = sources();
|
||||
for i = 1:numel(partNames)
|
||||
fprintf('== %d) %s [', i, partNames{i});
|
||||
fprintf(' %s ', srcFiles{i}{:});
|
||||
fprintf(']\n');
|
||||
end
|
||||
fprintf('== %d) All of the above \n==\nEnter your choice [1-%d]: ', ...
|
||||
numel(partNames) + 1, numel(partNames) + 1);
|
||||
selPart = input('', 's');
|
||||
partId = str2num(selPart);
|
||||
if ~isValidPartId(partId)
|
||||
partId = -1;
|
||||
end
|
||||
end
|
||||
|
||||
function [email,ch,signature,auxstring] = getChallenge(email, part)
|
||||
str = urlread(challenge_url(), 'post', {'email_address', email, 'assignment_part_sid', [homework_id() '-' num2str(part)], 'response_encoding', 'delim'});
|
||||
|
||||
str = strtrim(str);
|
||||
r = struct;
|
||||
while(numel(str) > 0)
|
||||
[f, str] = strtok (str, '|');
|
||||
[v, str] = strtok (str, '|');
|
||||
r = setfield(r, f, v);
|
||||
end
|
||||
|
||||
email = getfield(r, 'email_address');
|
||||
ch = getfield(r, 'challenge_key');
|
||||
signature = getfield(r, 'state');
|
||||
auxstring = getfield(r, 'challenge_aux_data');
|
||||
end
|
||||
|
||||
function [result, str] = submitSolutionWeb(email, part, output, source)
|
||||
|
||||
result = ['{"assignment_part_sid":"' base64encode([homework_id() '-' num2str(part)], '') '",' ...
|
||||
'"email_address":"' base64encode(email, '') '",' ...
|
||||
'"submission":"' base64encode(output, '') '",' ...
|
||||
'"submission_aux":"' base64encode(source, '') '"' ...
|
||||
'}'];
|
||||
str = 'Web-submission';
|
||||
end
|
||||
|
||||
function [result, str] = submitSolution(email, ch_resp, part, output, ...
|
||||
source, signature)
|
||||
|
||||
params = {'assignment_part_sid', [homework_id() '-' num2str(part)], ...
|
||||
'email_address', email, ...
|
||||
'submission', base64encode(output, ''), ...
|
||||
'submission_aux', base64encode(source, ''), ...
|
||||
'challenge_response', ch_resp, ...
|
||||
'state', signature};
|
||||
|
||||
str = urlread(submit_url(), 'post', params);
|
||||
|
||||
% Parse str to read for success / failure
|
||||
result = 0;
|
||||
|
||||
end
|
||||
|
||||
% =========================== LOGIN HELPERS ===========================
|
||||
|
||||
function [login password] = loginPrompt()
|
||||
% Prompt for password
|
||||
[login password] = basicPrompt();
|
||||
|
||||
if isempty(login) || isempty(password)
|
||||
login = []; password = [];
|
||||
end
|
||||
end
|
||||
|
||||
|
||||
function [login password] = basicPrompt()
|
||||
login = input('Login (Email address): ', 's');
|
||||
password = input('Password: ', 's');
|
||||
end
|
||||
|
||||
function [login password] = quickLogin(login,password)
|
||||
disp(['You are currently logged in as ' login '.']);
|
||||
cont_token = input('Is this you? (y/n - type n to reenter password)','s');
|
||||
if(isempty(cont_token) || cont_token(1)=='Y'||cont_token(1)=='y')
|
||||
return;
|
||||
else
|
||||
[login password] = loginPrompt();
|
||||
end
|
||||
end
|
||||
|
||||
function [str] = challengeResponse(email, passwd, challenge)
|
||||
str = sha1([challenge passwd]);
|
||||
end
|
||||
|
||||
% =============================== SHA-1 ================================
|
||||
|
||||
function hash = sha1(str)
|
||||
|
||||
% Initialize variables
|
||||
h0 = uint32(1732584193);
|
||||
h1 = uint32(4023233417);
|
||||
h2 = uint32(2562383102);
|
||||
h3 = uint32(271733878);
|
||||
h4 = uint32(3285377520);
|
||||
|
||||
% Convert to word array
|
||||
strlen = numel(str);
|
||||
|
||||
% Break string into chars and append the bit 1 to the message
|
||||
mC = [double(str) 128];
|
||||
mC = [mC zeros(1, 4-mod(numel(mC), 4), 'uint8')];
|
||||
|
||||
numB = strlen * 8;
|
||||
if exist('idivide')
|
||||
numC = idivide(uint32(numB + 65), 512, 'ceil');
|
||||
else
|
||||
numC = ceil(double(numB + 65)/512);
|
||||
end
|
||||
numW = numC * 16;
|
||||
mW = zeros(numW, 1, 'uint32');
|
||||
|
||||
idx = 1;
|
||||
for i = 1:4:strlen + 1
|
||||
mW(idx) = bitor(bitor(bitor( ...
|
||||
bitshift(uint32(mC(i)), 24), ...
|
||||
bitshift(uint32(mC(i+1)), 16)), ...
|
||||
bitshift(uint32(mC(i+2)), 8)), ...
|
||||
uint32(mC(i+3)));
|
||||
idx = idx + 1;
|
||||
end
|
||||
|
||||
% Append length of message
|
||||
mW(numW - 1) = uint32(bitshift(uint64(numB), -32));
|
||||
mW(numW) = uint32(bitshift(bitshift(uint64(numB), 32), -32));
|
||||
|
||||
% Process the message in successive 512-bit chs
|
||||
for cId = 1 : double(numC)
|
||||
cSt = (cId - 1) * 16 + 1;
|
||||
cEnd = cId * 16;
|
||||
ch = mW(cSt : cEnd);
|
||||
|
||||
% Extend the sixteen 32-bit words into eighty 32-bit words
|
||||
for j = 17 : 80
|
||||
ch(j) = ch(j - 3);
|
||||
ch(j) = bitxor(ch(j), ch(j - 8));
|
||||
ch(j) = bitxor(ch(j), ch(j - 14));
|
||||
ch(j) = bitxor(ch(j), ch(j - 16));
|
||||
ch(j) = bitrotate(ch(j), 1);
|
||||
end
|
||||
|
||||
% Initialize hash value for this ch
|
||||
a = h0;
|
||||
b = h1;
|
||||
c = h2;
|
||||
d = h3;
|
||||
e = h4;
|
||||
|
||||
% Main loop
|
||||
for i = 1 : 80
|
||||
if(i >= 1 && i <= 20)
|
||||
f = bitor(bitand(b, c), bitand(bitcmp(b), d));
|
||||
k = uint32(1518500249);
|
||||
elseif(i >= 21 && i <= 40)
|
||||
f = bitxor(bitxor(b, c), d);
|
||||
k = uint32(1859775393);
|
||||
elseif(i >= 41 && i <= 60)
|
||||
f = bitor(bitor(bitand(b, c), bitand(b, d)), bitand(c, d));
|
||||
k = uint32(2400959708);
|
||||
elseif(i >= 61 && i <= 80)
|
||||
f = bitxor(bitxor(b, c), d);
|
||||
k = uint32(3395469782);
|
||||
end
|
||||
|
||||
t = bitrotate(a, 5);
|
||||
t = bitadd(t, f);
|
||||
t = bitadd(t, e);
|
||||
t = bitadd(t, k);
|
||||
t = bitadd(t, ch(i));
|
||||
e = d;
|
||||
d = c;
|
||||
c = bitrotate(b, 30);
|
||||
b = a;
|
||||
a = t;
|
||||
|
||||
end
|
||||
h0 = bitadd(h0, a);
|
||||
h1 = bitadd(h1, b);
|
||||
h2 = bitadd(h2, c);
|
||||
h3 = bitadd(h3, d);
|
||||
h4 = bitadd(h4, e);
|
||||
|
||||
end
|
||||
|
||||
hash = reshape(dec2hex(double([h0 h1 h2 h3 h4]), 8)', [1 40]);
|
||||
|
||||
hash = lower(hash);
|
||||
|
||||
end
|
||||
|
||||
function ret = bitadd(iA, iB)
|
||||
ret = double(iA) + double(iB);
|
||||
ret = bitset(ret, 33, 0);
|
||||
ret = uint32(ret);
|
||||
end
|
||||
|
||||
function ret = bitrotate(iA, places)
|
||||
t = bitshift(iA, places - 32);
|
||||
ret = bitshift(iA, places);
|
||||
ret = bitor(ret, t);
|
||||
end
|
||||
|
||||
% =========================== Base64 Encoder ============================
|
||||
% Thanks to Peter John Acklam
|
||||
%
|
||||
|
||||
function y = base64encode(x, eol)
|
||||
%BASE64ENCODE Perform base64 encoding on a string.
|
||||
%
|
||||
% BASE64ENCODE(STR, EOL) encode the given string STR. EOL is the line ending
|
||||
% sequence to use; it is optional and defaults to '\n' (ASCII decimal 10).
|
||||
% The returned encoded string is broken into lines of no more than 76
|
||||
% characters each, and each line will end with EOL unless it is empty. Let
|
||||
% EOL be empty if you do not want the encoded string broken into lines.
|
||||
%
|
||||
% STR and EOL don't have to be strings (i.e., char arrays). The only
|
||||
% requirement is that they are vectors containing values in the range 0-255.
|
||||
%
|
||||
% This function may be used to encode strings into the Base64 encoding
|
||||
% specified in RFC 2045 - MIME (Multipurpose Internet Mail Extensions). The
|
||||
% Base64 encoding is designed to represent arbitrary sequences of octets in a
|
||||
% form that need not be humanly readable. A 65-character subset
|
||||
% ([A-Za-z0-9+/=]) of US-ASCII is used, enabling 6 bits to be represented per
|
||||
% printable character.
|
||||
%
|
||||
% Examples
|
||||
% --------
|
||||
%
|
||||
% If you want to encode a large file, you should encode it in chunks that are
|
||||
% a multiple of 57 bytes. This ensures that the base64 lines line up and
|
||||
% that you do not end up with padding in the middle. 57 bytes of data fills
|
||||
% one complete base64 line (76 == 57*4/3):
|
||||
%
|
||||
% If ifid and ofid are two file identifiers opened for reading and writing,
|
||||
% respectively, then you can base64 encode the data with
|
||||
%
|
||||
% while ~feof(ifid)
|
||||
% fwrite(ofid, base64encode(fread(ifid, 60*57)));
|
||||
% end
|
||||
%
|
||||
% or, if you have enough memory,
|
||||
%
|
||||
% fwrite(ofid, base64encode(fread(ifid)));
|
||||
%
|
||||
% See also BASE64DECODE.
|
||||
|
||||
% Author: Peter John Acklam
|
||||
% Time-stamp: 2004-02-03 21:36:56 +0100
|
||||
% E-mail: pjacklam@online.no
|
||||
% URL: http://home.online.no/~pjacklam
|
||||
|
||||
if isnumeric(x)
|
||||
x = num2str(x);
|
||||
end
|
||||
|
||||
% make sure we have the EOL value
|
||||
if nargin < 2
|
||||
eol = sprintf('\n');
|
||||
else
|
||||
if sum(size(eol) > 1) > 1
|
||||
error('EOL must be a vector.');
|
||||
end
|
||||
if any(eol(:) > 255)
|
||||
error('EOL can not contain values larger than 255.');
|
||||
end
|
||||
end
|
||||
|
||||
if sum(size(x) > 1) > 1
|
||||
error('STR must be a vector.');
|
||||
end
|
||||
|
||||
x = uint8(x);
|
||||
eol = uint8(eol);
|
||||
|
||||
ndbytes = length(x); % number of decoded bytes
|
||||
nchunks = ceil(ndbytes / 3); % number of chunks/groups
|
||||
nebytes = 4 * nchunks; % number of encoded bytes
|
||||
|
||||
% add padding if necessary, to make the length of x a multiple of 3
|
||||
if rem(ndbytes, 3)
|
||||
x(end+1 : 3*nchunks) = 0;
|
||||
end
|
||||
|
||||
x = reshape(x, [3, nchunks]); % reshape the data
|
||||
y = repmat(uint8(0), 4, nchunks); % for the encoded data
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% Split up every 3 bytes into 4 pieces
|
||||
%
|
||||
% aaaaaabb bbbbcccc ccdddddd
|
||||
%
|
||||
% to form
|
||||
%
|
||||
% 00aaaaaa 00bbbbbb 00cccccc 00dddddd
|
||||
%
|
||||
y(1,:) = bitshift(x(1,:), -2); % 6 highest bits of x(1,:)
|
||||
|
||||
y(2,:) = bitshift(bitand(x(1,:), 3), 4); % 2 lowest bits of x(1,:)
|
||||
y(2,:) = bitor(y(2,:), bitshift(x(2,:), -4)); % 4 highest bits of x(2,:)
|
||||
|
||||
y(3,:) = bitshift(bitand(x(2,:), 15), 2); % 4 lowest bits of x(2,:)
|
||||
y(3,:) = bitor(y(3,:), bitshift(x(3,:), -6)); % 2 highest bits of x(3,:)
|
||||
|
||||
y(4,:) = bitand(x(3,:), 63); % 6 lowest bits of x(3,:)
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% Now perform the following mapping
|
||||
%
|
||||
% 0 - 25 -> A-Z
|
||||
% 26 - 51 -> a-z
|
||||
% 52 - 61 -> 0-9
|
||||
% 62 -> +
|
||||
% 63 -> /
|
||||
%
|
||||
% We could use a mapping vector like
|
||||
%
|
||||
% ['A':'Z', 'a':'z', '0':'9', '+/']
|
||||
%
|
||||
% but that would require an index vector of class double.
|
||||
%
|
||||
z = repmat(uint8(0), size(y));
|
||||
i = y <= 25; z(i) = 'A' + double(y(i));
|
||||
i = 26 <= y & y <= 51; z(i) = 'a' - 26 + double(y(i));
|
||||
i = 52 <= y & y <= 61; z(i) = '0' - 52 + double(y(i));
|
||||
i = y == 62; z(i) = '+';
|
||||
i = y == 63; z(i) = '/';
|
||||
y = z;
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% Add padding if necessary.
|
||||
%
|
||||
npbytes = 3 * nchunks - ndbytes; % number of padding bytes
|
||||
if npbytes
|
||||
y(end-npbytes+1 : end) = '='; % '=' is used for padding
|
||||
end
|
||||
|
||||
if isempty(eol)
|
||||
|
||||
% reshape to a row vector
|
||||
y = reshape(y, [1, nebytes]);
|
||||
|
||||
else
|
||||
|
||||
nlines = ceil(nebytes / 76); % number of lines
|
||||
neolbytes = length(eol); % number of bytes in eol string
|
||||
|
||||
% pad data so it becomes a multiple of 76 elements
|
||||
y = [y(:) ; zeros(76 * nlines - numel(y), 1)];
|
||||
y(nebytes + 1 : 76 * nlines) = 0;
|
||||
y = reshape(y, 76, nlines);
|
||||
|
||||
% insert eol strings
|
||||
eol = eol(:);
|
||||
y(end + 1 : end + neolbytes, :) = eol(:, ones(1, nlines));
|
||||
|
||||
% remove padding, but keep the last eol string
|
||||
m = nebytes + neolbytes * (nlines - 1);
|
||||
n = (76+neolbytes)*nlines - neolbytes;
|
||||
y(m+1 : n) = '';
|
||||
|
||||
% extract and reshape to row vector
|
||||
y = reshape(y, 1, m+neolbytes);
|
||||
|
||||
end
|
||||
|
||||
% output is a character array
|
||||
y = char(y);
|
||||
|
||||
end
|
||||
@@ -0,0 +1,20 @@
|
||||
% submitWeb Creates files from your code and output for web submission.
|
||||
%
|
||||
% If the submit function does not work for you, use the web-submission mechanism.
|
||||
% Call this function to produce a file for the part you wish to submit. Then,
|
||||
% submit the file to the class servers using the "Web Submission" button on the
|
||||
% Programming Exercises page on the course website.
|
||||
%
|
||||
% You should call this function without arguments (submitWeb), to receive
|
||||
% an interactive prompt for submission; optionally you can call it with the partID
|
||||
% if you so wish. Make sure your working directory is set to the directory
|
||||
% containing the submitWeb.m file and your assignment files.
|
||||
|
||||
function submitWeb(partId)
|
||||
if ~exist('partId', 'var') || isempty(partId)
|
||||
partId = [];
|
||||
end
|
||||
|
||||
submit(partId, 1);
|
||||
end
|
||||
|
||||
@@ -0,0 +1,21 @@
|
||||
function [theta] = trainLinearReg(X, y, lambda)
|
||||
%TRAINLINEARREG Trains linear regression given a dataset (X, y) and a
|
||||
%regularization parameter lambda
|
||||
% [theta] = TRAINLINEARREG (X, y, lambda) trains linear regression using
|
||||
% the dataset (X, y) and regularization parameter lambda. Returns the
|
||||
% trained parameters theta.
|
||||
%
|
||||
|
||||
% Initialize Theta
|
||||
initial_theta = zeros(size(X, 2), 1);
|
||||
|
||||
% Create "short hand" for the cost function to be minimized
|
||||
costFunction = @(t) linearRegCostFunction(X, y, t, lambda);
|
||||
|
||||
% Now, costFunction is a function that takes in only one argument
|
||||
options = optimset('MaxIter', 200, 'GradObj', 'on');
|
||||
|
||||
% Minimize using fmincg
|
||||
theta = fmincg(costFunction, initial_theta, options);
|
||||
|
||||
end
|
||||
@@ -0,0 +1,52 @@
|
||||
function [lambda_vec, error_train, error_val] = ...
|
||||
validationCurve(X, y, Xval, yval)
|
||||
%VALIDATIONCURVE Generate the train and validation errors needed to
|
||||
%plot a validation curve that we can use to select lambda
|
||||
% [lambda_vec, error_train, error_val] = ...
|
||||
% VALIDATIONCURVE(X, y, Xval, yval) returns the train
|
||||
% and validation errors (in error_train, error_val)
|
||||
% for different values of lambda. You are given the training set (X,
|
||||
% y) and validation set (Xval, yval).
|
||||
%
|
||||
|
||||
% Selected values of lambda (you should not change this)
|
||||
lambda_vec = [0 0.001 0.003 0.01 0.03 0.1 0.3 1 3 10]';
|
||||
|
||||
% You need to return these variables correctly.
|
||||
error_train = zeros(length(lambda_vec), 1);
|
||||
error_val = zeros(length(lambda_vec), 1);
|
||||
|
||||
% ====================== YOUR CODE HERE ======================
|
||||
% Instructions: Fill in this function to return training errors in
|
||||
% error_train and the validation errors in error_val. The
|
||||
% vector lambda_vec contains the different lambda parameters
|
||||
% to use for each calculation of the errors, i.e,
|
||||
% error_train(i), and error_val(i) should give
|
||||
% you the errors obtained after training with
|
||||
% lambda = lambda_vec(i)
|
||||
%
|
||||
% Note: You can loop over lambda_vec with the following:
|
||||
%
|
||||
% for i = 1:length(lambda_vec)
|
||||
% lambda = lambda_vec(i);
|
||||
% % Compute train / val errors when training linear
|
||||
% % regression with regularization parameter lambda
|
||||
% % You should store the result in error_train(i)
|
||||
% % and error_val(i)
|
||||
% ....
|
||||
%
|
||||
% end
|
||||
%
|
||||
%
|
||||
m = size(X,1);
|
||||
mval = size(Xval,1);
|
||||
|
||||
for i = 1:length(lambda_vec)
|
||||
theta = trainLinearReg(X, y, lambda_vec(i));
|
||||
error_train(i) = sum( (X*theta - y) .^ 2 ) / (2*m);
|
||||
error_val(i) = sum( (Xval*theta - yval) .^ 2 ) / (2*mval);
|
||||
end
|
||||
|
||||
% =========================================================================
|
||||
|
||||
end
|
||||
BIN
machine_learning/course1/mlclass-ex6-008/ex6.pdf
Executable file
BIN
machine_learning/course1/mlclass-ex6-008/ex6.pdf
Executable file
Binary file not shown.
45
machine_learning/course1/mlclass-ex6-008/mlclass-ex6/dataset3Params.m
Executable file
45
machine_learning/course1/mlclass-ex6-008/mlclass-ex6/dataset3Params.m
Executable file
@@ -0,0 +1,45 @@
|
||||
function [C, sigma] = dataset3Params(X, y, Xval, yval)
|
||||
%EX6PARAMS returns your choice of C and sigma for Part 3 of the exercise
|
||||
%where you select the optimal (C, sigma) learning parameters to use for SVM
|
||||
%with RBF kernel
|
||||
% [C, sigma] = EX6PARAMS(X, y, Xval, yval) returns your choice of C and
|
||||
% sigma. You should complete this function to return the optimal C and
|
||||
% sigma based on a cross-validation set.
|
||||
%
|
||||
|
||||
% You need to return the following variables correctly.
|
||||
C = 1;
|
||||
sigma = 0.3;
|
||||
|
||||
% ====================== YOUR CODE HERE ======================
|
||||
% Instructions: Fill in this function to return the optimal C and sigma
|
||||
% learning parameters found using the cross validation set.
|
||||
% You can use svmPredict to predict the labels on the cross
|
||||
% validation set. For example,
|
||||
% predictions = svmPredict(model, Xval);
|
||||
% will return the predictions on the cross validation set.
|
||||
%
|
||||
% Note: You can compute the prediction error using
|
||||
% mean(double(predictions ~= yval))
|
||||
%
|
||||
|
||||
merr = 1000000000;
|
||||
|
||||
for i=-4:3
|
||||
for j=-4:3
|
||||
c = exp(i); % this will generate sequance close to
|
||||
s = exp(j); % 0.01 0.03 0.1 0.3 1 3 10 30
|
||||
model= svmTrain(X, y, c, @(x1, x2) gaussianKernel(x1, x2, s));
|
||||
predictions = svmPredict(model, Xval);
|
||||
err = mean(double(predictions ~= yval));
|
||||
if err < merr
|
||||
C = c;
|
||||
sigma = s;
|
||||
merr = err;
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
% =========================================================================
|
||||
|
||||
end
|
||||
58
machine_learning/course1/mlclass-ex6-008/mlclass-ex6/emailFeatures.m
Executable file
58
machine_learning/course1/mlclass-ex6-008/mlclass-ex6/emailFeatures.m
Executable file
@@ -0,0 +1,58 @@
|
||||
function x = emailFeatures(word_indices)
|
||||
%EMAILFEATURES takes in a word_indices vector and produces a feature vector
|
||||
%from the word indices
|
||||
% x = EMAILFEATURES(word_indices) takes in a word_indices vector and
|
||||
% produces a feature vector from the word indices.
|
||||
|
||||
% Total number of words in the dictionary
|
||||
n = 1899;
|
||||
|
||||
% You need to return the following variables correctly.
|
||||
x = zeros(n, 1);
|
||||
|
||||
% ====================== YOUR CODE HERE ======================
|
||||
% Instructions: Fill in this function to return a feature vector for the
|
||||
% given email (word_indices). To help make it easier to
|
||||
% process the emails, we have have already pre-processed each
|
||||
% email and converted each word in the email into an index in
|
||||
% a fixed dictionary (of 1899 words). The variable
|
||||
% word_indices contains the list of indices of the words
|
||||
% which occur in one email.
|
||||
%
|
||||
% Concretely, if an email has the text:
|
||||
%
|
||||
% The quick brown fox jumped over the lazy dog.
|
||||
%
|
||||
% Then, the word_indices vector for this text might look
|
||||
% like:
|
||||
%
|
||||
% 60 100 33 44 10 53 60 58 5
|
||||
%
|
||||
% where, we have mapped each word onto a number, for example:
|
||||
%
|
||||
% the -- 60
|
||||
% quick -- 100
|
||||
% ...
|
||||
%
|
||||
% (note: the above numbers are just an example and are not the
|
||||
% actual mappings).
|
||||
%
|
||||
% Your task is take one such word_indices vector and construct
|
||||
% a binary feature vector that indicates whether a particular
|
||||
% word occurs in the email. That is, x(i) = 1 when word i
|
||||
% is present in the email. Concretely, if the word 'the' (say,
|
||||
% index 60) appears in the email, then x(60) = 1. The feature
|
||||
% vector should look like:
|
||||
%
|
||||
% x = [ 0 0 0 0 1 0 0 0 ... 0 0 0 0 1 ... 0 0 0 1 0 ..];
|
||||
%
|
||||
%
|
||||
|
||||
for i=1:length(word_indices)
|
||||
x(word_indices(i)) |= 1;
|
||||
end
|
||||
|
||||
% =========================================================================
|
||||
|
||||
|
||||
end
|
||||
10
machine_learning/course1/mlclass-ex6-008/mlclass-ex6/emailSample1.txt
Executable file
10
machine_learning/course1/mlclass-ex6-008/mlclass-ex6/emailSample1.txt
Executable file
@@ -0,0 +1,10 @@
|
||||
> Anyone knows how much it costs to host a web portal ?
|
||||
>
|
||||
Well, it depends on how many visitors you're expecting.
|
||||
This can be anywhere from less than 10 bucks a month to a couple of $100.
|
||||
You should checkout http://www.rackspace.com/ or perhaps Amazon EC2
|
||||
if youre running something big..
|
||||
|
||||
To unsubscribe yourself from this mailing list, send an email to:
|
||||
groupname-unsubscribe@egroups.com
|
||||
|
||||
34
machine_learning/course1/mlclass-ex6-008/mlclass-ex6/emailSample2.txt
Executable file
34
machine_learning/course1/mlclass-ex6-008/mlclass-ex6/emailSample2.txt
Executable file
@@ -0,0 +1,34 @@
|
||||
Folks,
|
||||
|
||||
my first time posting - have a bit of Unix experience, but am new to Linux.
|
||||
|
||||
|
||||
Just got a new PC at home - Dell box with Windows XP. Added a second hard disk
|
||||
for Linux. Partitioned the disk and have installed Suse 7.2 from CD, which went
|
||||
fine except it didn't pick up my monitor.
|
||||
|
||||
I have a Dell branded E151FPp 15" LCD flat panel monitor and a nVidia GeForce4
|
||||
Ti4200 video card, both of which are probably too new to feature in Suse's default
|
||||
set. I downloaded a driver from the nVidia website and installed it using RPM.
|
||||
Then I ran Sax2 (as was recommended in some postings I found on the net), but
|
||||
it still doesn't feature my video card in the available list. What next?
|
||||
|
||||
Another problem. I have a Dell branded keyboard and if I hit Caps-Lock twice,
|
||||
the whole machine crashes (in Linux, not Windows) - even the on/off switch is
|
||||
inactive, leaving me to reach for the power cable instead.
|
||||
|
||||
If anyone can help me in any way with these probs., I'd be really grateful -
|
||||
I've searched the 'net but have run out of ideas.
|
||||
|
||||
Or should I be going for a different version of Linux such as RedHat? Opinions
|
||||
welcome.
|
||||
|
||||
Thanks a lot,
|
||||
Peter
|
||||
|
||||
--
|
||||
Irish Linux Users' Group: ilug@linux.ie
|
||||
http://www.linux.ie/mailman/listinfo/ilug for (un)subscription information.
|
||||
List maintainer: listmaster@linux.ie
|
||||
|
||||
|
||||
150
machine_learning/course1/mlclass-ex6-008/mlclass-ex6/ex6.m
Executable file
150
machine_learning/course1/mlclass-ex6-008/mlclass-ex6/ex6.m
Executable file
@@ -0,0 +1,150 @@
|
||||
%% Machine Learning Online Class
|
||||
% Exercise 6 | Support Vector Machines
|
||||
%
|
||||
% Instructions
|
||||
% ------------
|
||||
%
|
||||
% This file contains code that helps you get started on the
|
||||
% exercise. You will need to complete the following functions:
|
||||
%
|
||||
% gaussianKernel.m
|
||||
% dataset3Params.m
|
||||
% processEmail.m
|
||||
% emailFeatures.m
|
||||
%
|
||||
% For this exercise, you will not need to change any code in this file,
|
||||
% or any other files other than those mentioned above.
|
||||
%
|
||||
|
||||
%% Initialization
|
||||
clear ; close all; clc
|
||||
|
||||
%% =============== Part 1: Loading and Visualizing Data ================
|
||||
% We start the exercise by first loading and visualizing the dataset.
|
||||
% The following code will load the dataset into your environment and plot
|
||||
% the data.
|
||||
%
|
||||
|
||||
fprintf('Loading and Visualizing Data ...\n')
|
||||
|
||||
% Load from ex6data1:
|
||||
% You will have X, y in your environment
|
||||
load('ex6data1.mat');
|
||||
|
||||
% Plot training data
|
||||
plotData(X, y);
|
||||
|
||||
fprintf('Program paused. Press enter to continue.\n');
|
||||
pause;
|
||||
|
||||
%% ==================== Part 2: Training Linear SVM ====================
|
||||
% The following code will train a linear SVM on the dataset and plot the
|
||||
% decision boundary learned.
|
||||
%
|
||||
|
||||
% Load from ex6data1:
|
||||
% You will have X, y in your environment
|
||||
load('ex6data1.mat');
|
||||
|
||||
fprintf('\nTraining Linear SVM ...\n')
|
||||
|
||||
% You should try to change the C value below and see how the decision
|
||||
% boundary varies (e.g., try C = 1000)
|
||||
C = 1000;
|
||||
model = svmTrain(X, y, C, @linearKernel, 1e-3, 20);
|
||||
visualizeBoundaryLinear(X, y, model);
|
||||
|
||||
fprintf('Program paused. Press enter to continue.\n');
|
||||
pause;
|
||||
|
||||
%% =============== Part 3: Implementing Gaussian Kernel ===============
|
||||
% You will now implement the Gaussian kernel to use
|
||||
% with the SVM. You should complete the code in gaussianKernel.m
|
||||
%
|
||||
fprintf('\nEvaluating the Gaussian Kernel ...\n')
|
||||
|
||||
x1 = [1 2 1]; x2 = [0 4 -1]; sigma = 2;
|
||||
sim = gaussianKernel(x1, x2, sigma);
|
||||
|
||||
fprintf(['Gaussian Kernel between x1 = [1; 2; 1], x2 = [0; 4; -1], sigma = 0.5 :' ...
|
||||
'\n\t%f\n(this value should be about 0.324652)\n'], sim);
|
||||
|
||||
fprintf('Program paused. Press enter to continue.\n');
|
||||
pause;
|
||||
|
||||
%% =============== Part 4: Visualizing Dataset 2 ================
|
||||
% The following code will load the next dataset into your environment and
|
||||
% plot the data.
|
||||
%
|
||||
|
||||
fprintf('Loading and Visualizing Data ...\n')
|
||||
|
||||
% Load from ex6data2:
|
||||
% You will have X, y in your environment
|
||||
load('ex6data2.mat');
|
||||
|
||||
% Plot training data
|
||||
plotData(X, y);
|
||||
|
||||
fprintf('Program paused. Press enter to continue.\n');
|
||||
pause;
|
||||
|
||||
%% ========== Part 5: Training SVM with RBF Kernel (Dataset 2) ==========
|
||||
% After you have implemented the kernel, we can now use it to train the
|
||||
% SVM classifier.
|
||||
%
|
||||
fprintf('\nTraining SVM with RBF Kernel (this may take 1 to 2 minutes) ...\n');
|
||||
|
||||
% Load from ex6data2:
|
||||
% You will have X, y in your environment
|
||||
load('ex6data2.mat');
|
||||
|
||||
% SVM Parameters
|
||||
C = 1; sigma = 0.1;
|
||||
|
||||
% We set the tolerance and max_passes lower here so that the code will run
|
||||
% faster. However, in practice, you will want to run the training to
|
||||
% convergence.
|
||||
model= svmTrain(X, y, C, @(x1, x2) gaussianKernel(x1, x2, sigma));
|
||||
visualizeBoundary(X, y, model);
|
||||
|
||||
fprintf('Program paused. Press enter to continue.\n');
|
||||
pause;
|
||||
|
||||
%% =============== Part 6: Visualizing Dataset 3 ================
|
||||
% The following code will load the next dataset into your environment and
|
||||
% plot the data.
|
||||
%
|
||||
|
||||
fprintf('Loading and Visualizing Data ...\n')
|
||||
|
||||
% Load from ex6data3:
|
||||
% You will have X, y in your environment
|
||||
load('ex6data3.mat');
|
||||
|
||||
% Plot training data
|
||||
plotData(X, y);
|
||||
|
||||
fprintf('Program paused. Press enter to continue.\n');
|
||||
pause;
|
||||
|
||||
%% ========== Part 7: Training SVM with RBF Kernel (Dataset 3) ==========
|
||||
|
||||
% This is a different dataset that you can use to experiment with. Try
|
||||
% different values of C and sigma here.
|
||||
%
|
||||
|
||||
% Load from ex6data3:
|
||||
% You will have X, y in your environment
|
||||
load('ex6data3.mat');
|
||||
|
||||
% Try different SVM Parameters here
|
||||
[C, sigma] = dataset3Params(X, y, Xval, yval);
|
||||
|
||||
% Train the SVM
|
||||
model= svmTrain(X, y, C, @(x1, x2) gaussianKernel(x1, x2, sigma));
|
||||
visualizeBoundary(X, y, model);
|
||||
|
||||
fprintf('Program paused. Press enter to continue.\n');
|
||||
pause;
|
||||
|
||||
138
machine_learning/course1/mlclass-ex6-008/mlclass-ex6/ex6_spam.m
Executable file
138
machine_learning/course1/mlclass-ex6-008/mlclass-ex6/ex6_spam.m
Executable file
@@ -0,0 +1,138 @@
|
||||
%% Machine Learning Online Class
|
||||
% Exercise 6 | Spam Classification with SVMs
|
||||
%
|
||||
% Instructions
|
||||
% ------------
|
||||
%
|
||||
% This file contains code that helps you get started on the
|
||||
% exercise. You will need to complete the following functions:
|
||||
%
|
||||
% gaussianKernel.m
|
||||
% dataset3Params.m
|
||||
% processEmail.m
|
||||
% emailFeatures.m
|
||||
%
|
||||
% For this exercise, you will not need to change any code in this file,
|
||||
% or any other files other than those mentioned above.
|
||||
%
|
||||
|
||||
%% Initialization
|
||||
clear ; close all; clc
|
||||
|
||||
%% ==================== Part 1: Email Preprocessing ====================
|
||||
% To use an SVM to classify emails into Spam v.s. Non-Spam, you first need
|
||||
% to convert each email into a vector of features. In this part, you will
|
||||
% implement the preprocessing steps for each email. You should
|
||||
% complete the code in processEmail.m to produce a word indices vector
|
||||
% for a given email.
|
||||
|
||||
fprintf('\nPreprocessing sample email (emailSample1.txt)\n');
|
||||
|
||||
% Extract Features
|
||||
file_contents = readFile('emailSample1.txt');
|
||||
word_indices = processEmail(file_contents);
|
||||
|
||||
% Print Stats
|
||||
fprintf('Word Indices: \n');
|
||||
fprintf(' %d', word_indices);
|
||||
fprintf('\n\n');
|
||||
|
||||
fprintf('Program paused. Press enter to continue.\n');
|
||||
pause;
|
||||
|
||||
%% ==================== Part 2: Feature Extraction ====================
|
||||
% Now, you will convert each email into a vector of features in R^n.
|
||||
% You should complete the code in emailFeatures.m to produce a feature
|
||||
% vector for a given email.
|
||||
|
||||
fprintf('\nExtracting features from sample email (emailSample1.txt)\n');
|
||||
|
||||
% Extract Features
|
||||
file_contents = readFile('emailSample1.txt');
|
||||
word_indices = processEmail(file_contents);
|
||||
features = emailFeatures(word_indices);
|
||||
|
||||
% Print Stats
|
||||
fprintf('Length of feature vector: %d\n', length(features));
|
||||
fprintf('Number of non-zero entries: %d\n', sum(features > 0));
|
||||
|
||||
fprintf('Program paused. Press enter to continue.\n');
|
||||
pause;
|
||||
|
||||
%% =========== Part 3: Train Linear SVM for Spam Classification ========
|
||||
% In this section, you will train a linear classifier to determine if an
|
||||
% email is Spam or Not-Spam.
|
||||
|
||||
% Load the Spam Email dataset
|
||||
% You will have X, y in your environment
|
||||
load('spamTrain.mat');
|
||||
|
||||
fprintf('\nTraining Linear SVM (Spam Classification)\n')
|
||||
fprintf('(this may take 1 to 2 minutes) ...\n')
|
||||
|
||||
C = 0.1;
|
||||
model = svmTrain(X, y, C, @linearKernel);
|
||||
|
||||
p = svmPredict(model, X);
|
||||
|
||||
fprintf('Training Accuracy: %f\n', mean(double(p == y)) * 100);
|
||||
|
||||
%% =================== Part 4: Test Spam Classification ================
|
||||
% After training the classifier, we can evaluate it on a test set. We have
|
||||
% included a test set in spamTest.mat
|
||||
|
||||
% Load the test dataset
|
||||
% You will have Xtest, ytest in your environment
|
||||
load('spamTest.mat');
|
||||
|
||||
fprintf('\nEvaluating the trained Linear SVM on a test set ...\n')
|
||||
|
||||
p = svmPredict(model, Xtest);
|
||||
|
||||
fprintf('Test Accuracy: %f\n', mean(double(p == ytest)) * 100);
|
||||
pause;
|
||||
|
||||
|
||||
%% ================= Part 5: Top Predictors of Spam ====================
|
||||
% Since the model we are training is a linear SVM, we can inspect the
|
||||
% weights learned by the model to understand better how it is determining
|
||||
% whether an email is spam or not. The following code finds the words with
|
||||
% the highest weights in the classifier. Informally, the classifier
|
||||
% 'thinks' that these words are the most likely indicators of spam.
|
||||
%
|
||||
|
||||
% Sort the weights and obtin the vocabulary list
|
||||
[weight, idx] = sort(model.w, 'descend');
|
||||
vocabList = getVocabList();
|
||||
|
||||
fprintf('\nTop predictors of spam: \n');
|
||||
for i = 1:15
|
||||
fprintf(' %-15s (%f) \n', vocabList{idx(i)}, weight(i));
|
||||
end
|
||||
|
||||
fprintf('\n\n');
|
||||
fprintf('\nProgram paused. Press enter to continue.\n');
|
||||
pause;
|
||||
|
||||
%% =================== Part 6: Try Your Own Emails =====================
|
||||
% Now that you've trained the spam classifier, you can use it on your own
|
||||
% emails! In the starter code, we have included spamSample1.txt,
|
||||
% spamSample2.txt, emailSample1.txt and emailSample2.txt as examples.
|
||||
% The following code reads in one of these emails and then uses your
|
||||
% learned SVM classifier to determine whether the email is Spam or
|
||||
% Not Spam
|
||||
|
||||
% Set the file to be read in (change this to spamSample2.txt,
|
||||
% emailSample1.txt or emailSample2.txt to see different predictions on
|
||||
% different emails types). Try your own emails as well!
|
||||
filename = 'spamSample1.txt';
|
||||
|
||||
% Read and predict
|
||||
file_contents = readFile(filename);
|
||||
word_indices = processEmail(file_contents);
|
||||
x = emailFeatures(word_indices);
|
||||
p = svmPredict(model, x);
|
||||
|
||||
fprintf('\nProcessed %s\n\nSpam Classification: %d\n', filename, p);
|
||||
fprintf('(1 indicates spam, 0 indicates not spam)\n\n');
|
||||
|
||||
BIN
machine_learning/course1/mlclass-ex6-008/mlclass-ex6/ex6data1.mat
Executable file
BIN
machine_learning/course1/mlclass-ex6-008/mlclass-ex6/ex6data1.mat
Executable file
Binary file not shown.
BIN
machine_learning/course1/mlclass-ex6-008/mlclass-ex6/ex6data2.mat
Executable file
BIN
machine_learning/course1/mlclass-ex6-008/mlclass-ex6/ex6data2.mat
Executable file
Binary file not shown.
BIN
machine_learning/course1/mlclass-ex6-008/mlclass-ex6/ex6data3.mat
Executable file
BIN
machine_learning/course1/mlclass-ex6-008/mlclass-ex6/ex6data3.mat
Executable file
Binary file not shown.
27
machine_learning/course1/mlclass-ex6-008/mlclass-ex6/gaussianKernel.m
Executable file
27
machine_learning/course1/mlclass-ex6-008/mlclass-ex6/gaussianKernel.m
Executable file
@@ -0,0 +1,27 @@
|
||||
function sim = gaussianKernel(x1, x2, sigma)
|
||||
%RBFKERNEL returns a radial basis function kernel between x1 and x2
|
||||
% sim = gaussianKernel(x1, x2) returns a gaussian kernel between x1 and x2
|
||||
% and returns the value in sim
|
||||
|
||||
% Ensure that x1 and x2 are column vectors
|
||||
x1 = x1(:); x2 = x2(:);
|
||||
|
||||
% You need to return the following variables correctly.
|
||||
sim = 0;
|
||||
|
||||
% ====================== YOUR CODE HERE ======================
|
||||
% Instructions: Fill in this function to return the similarity between x1
|
||||
% and x2 computed using a Gaussian kernel with bandwidth
|
||||
% sigma
|
||||
%
|
||||
%
|
||||
|
||||
diff = (x1-x2);
|
||||
sim = exp( - diff' * diff / ( 2 * sigma^2))
|
||||
|
||||
|
||||
|
||||
|
||||
% =============================================================
|
||||
|
||||
end
|
||||
25
machine_learning/course1/mlclass-ex6-008/mlclass-ex6/getVocabList.m
Executable file
25
machine_learning/course1/mlclass-ex6-008/mlclass-ex6/getVocabList.m
Executable file
@@ -0,0 +1,25 @@
|
||||
function vocabList = getVocabList()
|
||||
%GETVOCABLIST reads the fixed vocabulary list in vocab.txt and returns a
|
||||
%cell array of the words
|
||||
% vocabList = GETVOCABLIST() reads the fixed vocabulary list in vocab.txt
|
||||
% and returns a cell array of the words in vocabList.
|
||||
|
||||
|
||||
%% Read the fixed vocabulary list
|
||||
fid = fopen('vocab.txt');
|
||||
|
||||
% Store all dictionary words in cell array vocab{}
|
||||
n = 1899; % Total number of words in the dictionary
|
||||
|
||||
% For ease of implementation, we use a struct to map the strings => integers
|
||||
% In practice, you'll want to use some form of hashmap
|
||||
vocabList = cell(n, 1);
|
||||
for i = 1:n
|
||||
% Word Index (can ignore since it will be = i)
|
||||
fscanf(fid, '%d', 1);
|
||||
% Actual Word
|
||||
vocabList{i} = fscanf(fid, '%s', 1);
|
||||
end
|
||||
fclose(fid);
|
||||
|
||||
end
|
||||
12
machine_learning/course1/mlclass-ex6-008/mlclass-ex6/linearKernel.m
Executable file
12
machine_learning/course1/mlclass-ex6-008/mlclass-ex6/linearKernel.m
Executable file
@@ -0,0 +1,12 @@
|
||||
function sim = linearKernel(x1, x2)
|
||||
%LINEARKERNEL returns a linear kernel between x1 and x2
|
||||
% sim = linearKernel(x1, x2) returns a linear kernel between x1 and x2
|
||||
% and returns the value in sim
|
||||
|
||||
% Ensure that x1 and x2 are column vectors
|
||||
x1 = x1(:); x2 = x2(:);
|
||||
|
||||
% Compute the kernel
|
||||
sim = x1' * x2; % dot product
|
||||
|
||||
end
|
||||
17
machine_learning/course1/mlclass-ex6-008/mlclass-ex6/plotData.m
Executable file
17
machine_learning/course1/mlclass-ex6-008/mlclass-ex6/plotData.m
Executable file
@@ -0,0 +1,17 @@
|
||||
function plotData(X, y)
|
||||
%PLOTDATA Plots the data points X and y into a new figure
|
||||
% PLOTDATA(x,y) plots the data points with + for the positive examples
|
||||
% and o for the negative examples. X is assumed to be a Mx2 matrix.
|
||||
%
|
||||
% Note: This was slightly modified such that it expects y = 1 or y = 0
|
||||
|
||||
% Find Indices of Positive and Negative Examples
|
||||
pos = find(y == 1); neg = find(y == 0);
|
||||
|
||||
% Plot Examples
|
||||
plot(X(pos, 1), X(pos, 2), 'k+','LineWidth', 1, 'MarkerSize', 7)
|
||||
hold on;
|
||||
plot(X(neg, 1), X(neg, 2), 'ko', 'MarkerFaceColor', 'y', 'MarkerSize', 7)
|
||||
hold off;
|
||||
|
||||
end
|
||||
385
machine_learning/course1/mlclass-ex6-008/mlclass-ex6/porterStemmer.m
Executable file
385
machine_learning/course1/mlclass-ex6-008/mlclass-ex6/porterStemmer.m
Executable file
@@ -0,0 +1,385 @@
|
||||
function stem = porterStemmer(inString)
|
||||
% Applies the Porter Stemming algorithm as presented in the following
|
||||
% paper:
|
||||
% Porter, 1980, An algorithm for suffix stripping, Program, Vol. 14,
|
||||
% no. 3, pp 130-137
|
||||
|
||||
% Original code modeled after the C version provided at:
|
||||
% http://www.tartarus.org/~martin/PorterStemmer/c.txt
|
||||
|
||||
% The main part of the stemming algorithm starts here. b is an array of
|
||||
% characters, holding the word to be stemmed. The letters are in b[k0],
|
||||
% b[k0+1] ending at b[k]. In fact k0 = 1 in this demo program (since
|
||||
% matlab begins indexing by 1 instead of 0). k is readjusted downwards as
|
||||
% the stemming progresses. Zero termination is not in fact used in the
|
||||
% algorithm.
|
||||
|
||||
% To call this function, use the string to be stemmed as the input
|
||||
% argument. This function returns the stemmed word as a string.
|
||||
|
||||
% Lower-case string
|
||||
inString = lower(inString);
|
||||
|
||||
global j;
|
||||
b = inString;
|
||||
k = length(b);
|
||||
k0 = 1;
|
||||
j = k;
|
||||
|
||||
|
||||
|
||||
% With this if statement, strings of length 1 or 2 don't go through the
|
||||
% stemming process. Remove this conditional to match the published
|
||||
% algorithm.
|
||||
stem = b;
|
||||
if k > 2
|
||||
% Output displays per step are commented out.
|
||||
%disp(sprintf('Word to stem: %s', b));
|
||||
x = step1ab(b, k, k0);
|
||||
%disp(sprintf('Steps 1A and B yield: %s', x{1}));
|
||||
x = step1c(x{1}, x{2}, k0);
|
||||
%disp(sprintf('Step 1C yields: %s', x{1}));
|
||||
x = step2(x{1}, x{2}, k0);
|
||||
%disp(sprintf('Step 2 yields: %s', x{1}));
|
||||
x = step3(x{1}, x{2}, k0);
|
||||
%disp(sprintf('Step 3 yields: %s', x{1}));
|
||||
x = step4(x{1}, x{2}, k0);
|
||||
%disp(sprintf('Step 4 yields: %s', x{1}));
|
||||
x = step5(x{1}, x{2}, k0);
|
||||
%disp(sprintf('Step 5 yields: %s', x{1}));
|
||||
stem = x{1};
|
||||
end
|
||||
|
||||
% cons(j) is TRUE <=> b[j] is a consonant.
|
||||
function c = cons(i, b, k0)
|
||||
c = true;
|
||||
switch(b(i))
|
||||
case {'a', 'e', 'i', 'o', 'u'}
|
||||
c = false;
|
||||
case 'y'
|
||||
if i == k0
|
||||
c = true;
|
||||
else
|
||||
c = ~cons(i - 1, b, k0);
|
||||
end
|
||||
end
|
||||
|
||||
% mseq() measures the number of consonant sequences between k0 and j. If
|
||||
% c is a consonant sequence and v a vowel sequence, and <..> indicates
|
||||
% arbitrary presence,
|
||||
|
||||
% <c><v> gives 0
|
||||
% <c>vc<v> gives 1
|
||||
% <c>vcvc<v> gives 2
|
||||
% <c>vcvcvc<v> gives 3
|
||||
% ....
|
||||
function n = measure(b, k0)
|
||||
global j;
|
||||
n = 0;
|
||||
i = k0;
|
||||
while true
|
||||
if i > j
|
||||
return
|
||||
end
|
||||
if ~cons(i, b, k0)
|
||||
break;
|
||||
end
|
||||
i = i + 1;
|
||||
end
|
||||
i = i + 1;
|
||||
while true
|
||||
while true
|
||||
if i > j
|
||||
return
|
||||
end
|
||||
if cons(i, b, k0)
|
||||
break;
|
||||
end
|
||||
i = i + 1;
|
||||
end
|
||||
i = i + 1;
|
||||
n = n + 1;
|
||||
while true
|
||||
if i > j
|
||||
return
|
||||
end
|
||||
if ~cons(i, b, k0)
|
||||
break;
|
||||
end
|
||||
i = i + 1;
|
||||
end
|
||||
i = i + 1;
|
||||
end
|
||||
|
||||
|
||||
% vowelinstem() is TRUE <=> k0,...j contains a vowel
|
||||
function vis = vowelinstem(b, k0)
|
||||
global j;
|
||||
for i = k0:j,
|
||||
if ~cons(i, b, k0)
|
||||
vis = true;
|
||||
return
|
||||
end
|
||||
end
|
||||
vis = false;
|
||||
|
||||
%doublec(i) is TRUE <=> i,(i-1) contain a double consonant.
|
||||
function dc = doublec(i, b, k0)
|
||||
if i < k0+1
|
||||
dc = false;
|
||||
return
|
||||
end
|
||||
if b(i) ~= b(i-1)
|
||||
dc = false;
|
||||
return
|
||||
end
|
||||
dc = cons(i, b, k0);
|
||||
|
||||
|
||||
% cvc(j) is TRUE <=> j-2,j-1,j has the form consonant - vowel - consonant
|
||||
% and also if the second c is not w,x or y. this is used when trying to
|
||||
% restore an e at the end of a short word. e.g.
|
||||
%
|
||||
% cav(e), lov(e), hop(e), crim(e), but
|
||||
% snow, box, tray.
|
||||
|
||||
function c1 = cvc(i, b, k0)
|
||||
if ((i < (k0+2)) || ~cons(i, b, k0) || cons(i-1, b, k0) || ~cons(i-2, b, k0))
|
||||
c1 = false;
|
||||
else
|
||||
if (b(i) == 'w' || b(i) == 'x' || b(i) == 'y')
|
||||
c1 = false;
|
||||
return
|
||||
end
|
||||
c1 = true;
|
||||
end
|
||||
|
||||
% ends(s) is TRUE <=> k0,...k ends with the string s.
|
||||
function s = ends(str, b, k)
|
||||
global j;
|
||||
if (str(length(str)) ~= b(k))
|
||||
s = false;
|
||||
return
|
||||
end % tiny speed-up
|
||||
if (length(str) > k)
|
||||
s = false;
|
||||
return
|
||||
end
|
||||
if strcmp(b(k-length(str)+1:k), str)
|
||||
s = true;
|
||||
j = k - length(str);
|
||||
return
|
||||
else
|
||||
s = false;
|
||||
end
|
||||
|
||||
% setto(s) sets (j+1),...k to the characters in the string s, readjusting
|
||||
% k accordingly.
|
||||
|
||||
function so = setto(s, b, k)
|
||||
global j;
|
||||
for i = j+1:(j+length(s))
|
||||
b(i) = s(i-j);
|
||||
end
|
||||
if k > j+length(s)
|
||||
b((j+length(s)+1):k) = '';
|
||||
end
|
||||
k = length(b);
|
||||
so = {b, k};
|
||||
|
||||
% rs(s) is used further down.
|
||||
% [Note: possible null/value for r if rs is called]
|
||||
function r = rs(str, b, k, k0)
|
||||
r = {b, k};
|
||||
if measure(b, k0) > 0
|
||||
r = setto(str, b, k);
|
||||
end
|
||||
|
||||
% step1ab() gets rid of plurals and -ed or -ing. e.g.
|
||||
|
||||
% caresses -> caress
|
||||
% ponies -> poni
|
||||
% ties -> ti
|
||||
% caress -> caress
|
||||
% cats -> cat
|
||||
|
||||
% feed -> feed
|
||||
% agreed -> agree
|
||||
% disabled -> disable
|
||||
|
||||
% matting -> mat
|
||||
% mating -> mate
|
||||
% meeting -> meet
|
||||
% milling -> mill
|
||||
% messing -> mess
|
||||
|
||||
% meetings -> meet
|
||||
|
||||
function s1ab = step1ab(b, k, k0)
|
||||
global j;
|
||||
if b(k) == 's'
|
||||
if ends('sses', b, k)
|
||||
k = k-2;
|
||||
elseif ends('ies', b, k)
|
||||
retVal = setto('i', b, k);
|
||||
b = retVal{1};
|
||||
k = retVal{2};
|
||||
elseif (b(k-1) ~= 's')
|
||||
k = k-1;
|
||||
end
|
||||
end
|
||||
if ends('eed', b, k)
|
||||
if measure(b, k0) > 0;
|
||||
k = k-1;
|
||||
end
|
||||
elseif (ends('ed', b, k) || ends('ing', b, k)) && vowelinstem(b, k0)
|
||||
k = j;
|
||||
retVal = {b, k};
|
||||
if ends('at', b, k)
|
||||
retVal = setto('ate', b(k0:k), k);
|
||||
elseif ends('bl', b, k)
|
||||
retVal = setto('ble', b(k0:k), k);
|
||||
elseif ends('iz', b, k)
|
||||
retVal = setto('ize', b(k0:k), k);
|
||||
elseif doublec(k, b, k0)
|
||||
retVal = {b, k-1};
|
||||
if b(retVal{2}) == 'l' || b(retVal{2}) == 's' || ...
|
||||
b(retVal{2}) == 'z'
|
||||
retVal = {retVal{1}, retVal{2}+1};
|
||||
end
|
||||
elseif measure(b, k0) == 1 && cvc(k, b, k0)
|
||||
retVal = setto('e', b(k0:k), k);
|
||||
end
|
||||
k = retVal{2};
|
||||
b = retVal{1}(k0:k);
|
||||
end
|
||||
j = k;
|
||||
s1ab = {b(k0:k), k};
|
||||
|
||||
% step1c() turns terminal y to i when there is another vowel in the stem.
|
||||
function s1c = step1c(b, k, k0)
|
||||
global j;
|
||||
if ends('y', b, k) && vowelinstem(b, k0)
|
||||
b(k) = 'i';
|
||||
end
|
||||
j = k;
|
||||
s1c = {b, k};
|
||||
|
||||
% step2() maps double suffices to single ones. so -ization ( = -ize plus
|
||||
% -ation) maps to -ize etc. note that the string before the suffix must give
|
||||
% m() > 0.
|
||||
function s2 = step2(b, k, k0)
|
||||
global j;
|
||||
s2 = {b, k};
|
||||
switch b(k-1)
|
||||
case {'a'}
|
||||
if ends('ational', b, k) s2 = rs('ate', b, k, k0);
|
||||
elseif ends('tional', b, k) s2 = rs('tion', b, k, k0); end;
|
||||
case {'c'}
|
||||
if ends('enci', b, k) s2 = rs('ence', b, k, k0);
|
||||
elseif ends('anci', b, k) s2 = rs('ance', b, k, k0); end;
|
||||
case {'e'}
|
||||
if ends('izer', b, k) s2 = rs('ize', b, k, k0); end;
|
||||
case {'l'}
|
||||
if ends('bli', b, k) s2 = rs('ble', b, k, k0);
|
||||
elseif ends('alli', b, k) s2 = rs('al', b, k, k0);
|
||||
elseif ends('entli', b, k) s2 = rs('ent', b, k, k0);
|
||||
elseif ends('eli', b, k) s2 = rs('e', b, k, k0);
|
||||
elseif ends('ousli', b, k) s2 = rs('ous', b, k, k0); end;
|
||||
case {'o'}
|
||||
if ends('ization', b, k) s2 = rs('ize', b, k, k0);
|
||||
elseif ends('ation', b, k) s2 = rs('ate', b, k, k0);
|
||||
elseif ends('ator', b, k) s2 = rs('ate', b, k, k0); end;
|
||||
case {'s'}
|
||||
if ends('alism', b, k) s2 = rs('al', b, k, k0);
|
||||
elseif ends('iveness', b, k) s2 = rs('ive', b, k, k0);
|
||||
elseif ends('fulness', b, k) s2 = rs('ful', b, k, k0);
|
||||
elseif ends('ousness', b, k) s2 = rs('ous', b, k, k0); end;
|
||||
case {'t'}
|
||||
if ends('aliti', b, k) s2 = rs('al', b, k, k0);
|
||||
elseif ends('iviti', b, k) s2 = rs('ive', b, k, k0);
|
||||
elseif ends('biliti', b, k) s2 = rs('ble', b, k, k0); end;
|
||||
case {'g'}
|
||||
if ends('logi', b, k) s2 = rs('log', b, k, k0); end;
|
||||
end
|
||||
j = s2{2};
|
||||
|
||||
% step3() deals with -ic-, -full, -ness etc. similar strategy to step2.
|
||||
function s3 = step3(b, k, k0)
|
||||
global j;
|
||||
s3 = {b, k};
|
||||
switch b(k)
|
||||
case {'e'}
|
||||
if ends('icate', b, k) s3 = rs('ic', b, k, k0);
|
||||
elseif ends('ative', b, k) s3 = rs('', b, k, k0);
|
||||
elseif ends('alize', b, k) s3 = rs('al', b, k, k0); end;
|
||||
case {'i'}
|
||||
if ends('iciti', b, k) s3 = rs('ic', b, k, k0); end;
|
||||
case {'l'}
|
||||
if ends('ical', b, k) s3 = rs('ic', b, k, k0);
|
||||
elseif ends('ful', b, k) s3 = rs('', b, k, k0); end;
|
||||
case {'s'}
|
||||
if ends('ness', b, k) s3 = rs('', b, k, k0); end;
|
||||
end
|
||||
j = s3{2};
|
||||
|
||||
% step4() takes off -ant, -ence etc., in context <c>vcvc<v>.
|
||||
function s4 = step4(b, k, k0)
|
||||
global j;
|
||||
switch b(k-1)
|
||||
case {'a'}
|
||||
if ends('al', b, k) end;
|
||||
case {'c'}
|
||||
if ends('ance', b, k)
|
||||
elseif ends('ence', b, k) end;
|
||||
case {'e'}
|
||||
if ends('er', b, k) end;
|
||||
case {'i'}
|
||||
if ends('ic', b, k) end;
|
||||
case {'l'}
|
||||
if ends('able', b, k)
|
||||
elseif ends('ible', b, k) end;
|
||||
case {'n'}
|
||||
if ends('ant', b, k)
|
||||
elseif ends('ement', b, k)
|
||||
elseif ends('ment', b, k)
|
||||
elseif ends('ent', b, k) end;
|
||||
case {'o'}
|
||||
if ends('ion', b, k)
|
||||
if j == 0
|
||||
elseif ~(strcmp(b(j),'s') || strcmp(b(j),'t'))
|
||||
j = k;
|
||||
end
|
||||
elseif ends('ou', b, k) end;
|
||||
case {'s'}
|
||||
if ends('ism', b, k) end;
|
||||
case {'t'}
|
||||
if ends('ate', b, k)
|
||||
elseif ends('iti', b, k) end;
|
||||
case {'u'}
|
||||
if ends('ous', b, k) end;
|
||||
case {'v'}
|
||||
if ends('ive', b, k) end;
|
||||
case {'z'}
|
||||
if ends('ize', b, k) end;
|
||||
end
|
||||
if measure(b, k0) > 1
|
||||
s4 = {b(k0:j), j};
|
||||
else
|
||||
s4 = {b(k0:k), k};
|
||||
end
|
||||
|
||||
% step5() removes a final -e if m() > 1, and changes -ll to -l if m() > 1.
|
||||
function s5 = step5(b, k, k0)
|
||||
global j;
|
||||
j = k;
|
||||
if b(k) == 'e'
|
||||
a = measure(b, k0);
|
||||
if (a > 1) || ((a == 1) && ~cvc(k-1, b, k0))
|
||||
k = k-1;
|
||||
end
|
||||
end
|
||||
if (b(k) == 'l') && doublec(k, b, k0) && (measure(b, k0) > 1)
|
||||
k = k-1;
|
||||
end
|
||||
s5 = {b(k0:k), k};
|
||||
123
machine_learning/course1/mlclass-ex6-008/mlclass-ex6/processEmail.m
Executable file
123
machine_learning/course1/mlclass-ex6-008/mlclass-ex6/processEmail.m
Executable file
@@ -0,0 +1,123 @@
|
||||
function word_indices = processEmail(email_contents)
|
||||
%PROCESSEMAIL preprocesses a the body of an email and
|
||||
%returns a list of word_indices
|
||||
% word_indices = PROCESSEMAIL(email_contents) preprocesses
|
||||
% the body of an email and returns a list of indices of the
|
||||
% words contained in the email.
|
||||
%
|
||||
|
||||
% Load Vocabulary
|
||||
vocabList = getVocabList();
|
||||
|
||||
% Init return value
|
||||
word_indices = [];
|
||||
|
||||
% ========================== Preprocess Email ===========================
|
||||
|
||||
% Find the Headers ( \n\n and remove )
|
||||
% Uncomment the following lines if you are working with raw emails with the
|
||||
% full headers
|
||||
|
||||
% hdrstart = strfind(email_contents, ([char(10) char(10)]));
|
||||
% email_contents = email_contents(hdrstart(1):end);
|
||||
|
||||
% Lower case
|
||||
email_contents = lower(email_contents);
|
||||
|
||||
% Strip all HTML
|
||||
% Looks for any expression that starts with < and ends with > and replace
|
||||
% and does not have any < or > in the tag it with a space
|
||||
email_contents = regexprep(email_contents, '<[^<>]+>', ' ');
|
||||
|
||||
% Handle Numbers
|
||||
% Look for one or more characters between 0-9
|
||||
email_contents = regexprep(email_contents, '[0-9]+', 'number');
|
||||
|
||||
% Handle URLS
|
||||
% Look for strings starting with http:// or https://
|
||||
email_contents = regexprep(email_contents, ...
|
||||
'(http|https)://[^\s]*', 'httpaddr');
|
||||
|
||||
% Handle Email Addresses
|
||||
% Look for strings with @ in the middle
|
||||
email_contents = regexprep(email_contents, '[^\s]+@[^\s]+', 'emailaddr');
|
||||
|
||||
% Handle $ sign
|
||||
email_contents = regexprep(email_contents, '[$]+', 'dollar');
|
||||
|
||||
|
||||
% ========================== Tokenize Email ===========================
|
||||
|
||||
% Output the email to screen as well
|
||||
fprintf('\n==== Processed Email ====\n\n');
|
||||
|
||||
% Process file
|
||||
l = 0;
|
||||
|
||||
while ~isempty(email_contents)
|
||||
|
||||
% Tokenize and also get rid of any punctuation
|
||||
[str, email_contents] = ...
|
||||
strtok(email_contents, ...
|
||||
[' @$/#.-:&*+=[]?!(){},''">_<;%' char(10) char(13)]);
|
||||
|
||||
% Remove any non alphanumeric characters
|
||||
str = regexprep(str, '[^a-zA-Z0-9]', '');
|
||||
|
||||
% Stem the word
|
||||
% (the porterStemmer sometimes has issues, so we use a try catch block)
|
||||
try str = porterStemmer(strtrim(str));
|
||||
catch str = ''; continue;
|
||||
end;
|
||||
|
||||
% Skip the word if it is too short
|
||||
if length(str) < 1
|
||||
continue;
|
||||
end
|
||||
|
||||
% Look up the word in the dictionary and add to word_indices if
|
||||
% found
|
||||
% ====================== YOUR CODE HERE ======================
|
||||
% Instructions: Fill in this function to add the index of str to
|
||||
% word_indices if it is in the vocabulary. At this point
|
||||
% of the code, you have a stemmed word from the email in
|
||||
% the variable str. You should look up str in the
|
||||
% vocabulary list (vocabList). If a match exists, you
|
||||
% should add the index of the word to the word_indices
|
||||
% vector. Concretely, if str = 'action', then you should
|
||||
% look up the vocabulary list to find where in vocabList
|
||||
% 'action' appears. For example, if vocabList{18} =
|
||||
% 'action', then, you should add 18 to the word_indices
|
||||
% vector (e.g., word_indices = [word_indices ; 18]; ).
|
||||
%
|
||||
% Note: vocabList{idx} returns a the word with index idx in the
|
||||
% vocabulary list.
|
||||
%
|
||||
% Note: You can use strcmp(str1, str2) to compare two strings (str1 and
|
||||
% str2). It will return 1 only if the two strings are equivalent.
|
||||
%
|
||||
|
||||
word_count = length(vocabList);
|
||||
idx = strcmp(str,vocabList)'*(1:word_count)';
|
||||
if idx > 0
|
||||
word_indices = [word_indices; idx];
|
||||
end
|
||||
|
||||
|
||||
% =============================================================
|
||||
|
||||
|
||||
% Print to screen, ensuring that the output lines are not too long
|
||||
if (l + length(str) + 1) > 78
|
||||
fprintf('\n');
|
||||
l = 0;
|
||||
end
|
||||
fprintf('%s ', str);
|
||||
l = l + length(str) + 1;
|
||||
|
||||
end
|
||||
|
||||
% Print footer
|
||||
fprintf('\n\n=========================\n');
|
||||
|
||||
end
|
||||
18
machine_learning/course1/mlclass-ex6-008/mlclass-ex6/readFile.m
Executable file
18
machine_learning/course1/mlclass-ex6-008/mlclass-ex6/readFile.m
Executable file
@@ -0,0 +1,18 @@
|
||||
function file_contents = readFile(filename)
|
||||
%READFILE reads a file and returns its entire contents
|
||||
% file_contents = READFILE(filename) reads a file and returns its entire
|
||||
% contents in file_contents
|
||||
%
|
||||
|
||||
% Load File
|
||||
fid = fopen(filename);
|
||||
if fid
|
||||
file_contents = fscanf(fid, '%c', inf);
|
||||
fclose(fid);
|
||||
else
|
||||
file_contents = '';
|
||||
fprintf('Unable to open %s\n', filename);
|
||||
end
|
||||
|
||||
end
|
||||
|
||||
42
machine_learning/course1/mlclass-ex6-008/mlclass-ex6/spamSample1.txt
Executable file
42
machine_learning/course1/mlclass-ex6-008/mlclass-ex6/spamSample1.txt
Executable file
@@ -0,0 +1,42 @@
|
||||
Do You Want To Make $1000 Or More Per Week?
|
||||
|
||||
|
||||
|
||||
If you are a motivated and qualified individual - I
|
||||
will personally demonstrate to you a system that will
|
||||
make you $1,000 per week or more! This is NOT mlm.
|
||||
|
||||
|
||||
|
||||
Call our 24 hour pre-recorded number to get the
|
||||
details.
|
||||
|
||||
|
||||
|
||||
000-456-789
|
||||
|
||||
|
||||
|
||||
I need people who want to make serious money. Make
|
||||
the call and get the facts.
|
||||
|
||||
Invest 2 minutes in yourself now!
|
||||
|
||||
|
||||
|
||||
000-456-789
|
||||
|
||||
|
||||
|
||||
Looking forward to your call and I will introduce you
|
||||
to people like yourself who
|
||||
are currently making $10,000 plus per week!
|
||||
|
||||
|
||||
|
||||
000-456-789
|
||||
|
||||
|
||||
|
||||
3484lJGv6-241lEaN9080lRmS6-271WxHo7524qiyT5-438rjUv5615hQcf0-662eiDB9057dMtVl72
|
||||
|
||||
8
machine_learning/course1/mlclass-ex6-008/mlclass-ex6/spamSample2.txt
Executable file
8
machine_learning/course1/mlclass-ex6-008/mlclass-ex6/spamSample2.txt
Executable file
@@ -0,0 +1,8 @@
|
||||
Best Buy Viagra Generic Online
|
||||
|
||||
Viagra 100mg x 60 Pills $125, Free Pills & Reorder Discount, Top Selling 100% Quality & Satisfaction guaranteed!
|
||||
|
||||
We accept VISA, Master & E-Check Payments, 90000+ Satisfied Customers!
|
||||
http://medphysitcstech.ru
|
||||
|
||||
|
||||
BIN
machine_learning/course1/mlclass-ex6-008/mlclass-ex6/spamTest.mat
Executable file
BIN
machine_learning/course1/mlclass-ex6-008/mlclass-ex6/spamTest.mat
Executable file
Binary file not shown.
BIN
machine_learning/course1/mlclass-ex6-008/mlclass-ex6/spamTrain.mat
Executable file
BIN
machine_learning/course1/mlclass-ex6-008/mlclass-ex6/spamTrain.mat
Executable file
Binary file not shown.
573
machine_learning/course1/mlclass-ex6-008/mlclass-ex6/submit.m
Executable file
573
machine_learning/course1/mlclass-ex6-008/mlclass-ex6/submit.m
Executable file
@@ -0,0 +1,573 @@
|
||||
function submit(partId, webSubmit)
|
||||
%SUBMIT Submit your code and output to the ml-class servers
|
||||
% SUBMIT() will connect to the ml-class server and submit your solution
|
||||
|
||||
fprintf('==\n== [ml-class] Submitting Solutions | Programming Exercise %s\n==\n', ...
|
||||
homework_id());
|
||||
if ~exist('partId', 'var') || isempty(partId)
|
||||
partId = promptPart();
|
||||
end
|
||||
|
||||
if ~exist('webSubmit', 'var') || isempty(webSubmit)
|
||||
webSubmit = 0; % submit directly by default
|
||||
end
|
||||
|
||||
% Check valid partId
|
||||
partNames = validParts();
|
||||
if ~isValidPartId(partId)
|
||||
fprintf('!! Invalid homework part selected.\n');
|
||||
fprintf('!! Expected an integer from 1 to %d.\n', numel(partNames) + 1);
|
||||
fprintf('!! Submission Cancelled\n');
|
||||
return
|
||||
end
|
||||
|
||||
if ~exist('ml_login_data.mat','file')
|
||||
[login password] = loginPrompt();
|
||||
save('ml_login_data.mat','login','password');
|
||||
else
|
||||
load('ml_login_data.mat');
|
||||
[login password] = quickLogin(login, password);
|
||||
save('ml_login_data.mat','login','password');
|
||||
end
|
||||
|
||||
if isempty(login)
|
||||
fprintf('!! Submission Cancelled\n');
|
||||
return
|
||||
end
|
||||
|
||||
fprintf('\n== Connecting to ml-class ... ');
|
||||
if exist('OCTAVE_VERSION')
|
||||
fflush(stdout);
|
||||
end
|
||||
|
||||
% Setup submit list
|
||||
if partId == numel(partNames) + 1
|
||||
submitParts = 1:numel(partNames);
|
||||
else
|
||||
submitParts = [partId];
|
||||
end
|
||||
|
||||
for s = 1:numel(submitParts)
|
||||
thisPartId = submitParts(s);
|
||||
if (~webSubmit) % submit directly to server
|
||||
[login, ch, signature, auxstring] = getChallenge(login, thisPartId);
|
||||
if isempty(login) || isempty(ch) || isempty(signature)
|
||||
% Some error occured, error string in first return element.
|
||||
fprintf('\n!! Error: %s\n\n', login);
|
||||
return
|
||||
end
|
||||
|
||||
% Attempt Submission with Challenge
|
||||
ch_resp = challengeResponse(login, password, ch);
|
||||
|
||||
[result, str] = submitSolution(login, ch_resp, thisPartId, ...
|
||||
output(thisPartId, auxstring), source(thisPartId), signature);
|
||||
|
||||
partName = partNames{thisPartId};
|
||||
|
||||
fprintf('\n== [ml-class] Submitted Assignment %s - Part %d - %s\n', ...
|
||||
homework_id(), thisPartId, partName);
|
||||
fprintf('== %s\n', strtrim(str));
|
||||
|
||||
if exist('OCTAVE_VERSION')
|
||||
fflush(stdout);
|
||||
end
|
||||
else
|
||||
[result] = submitSolutionWeb(login, thisPartId, output(thisPartId), ...
|
||||
source(thisPartId));
|
||||
result = base64encode(result);
|
||||
|
||||
fprintf('\nSave as submission file [submit_ex%s_part%d.txt (enter to accept default)]:', ...
|
||||
homework_id(), thisPartId);
|
||||
saveAsFile = input('', 's');
|
||||
if (isempty(saveAsFile))
|
||||
saveAsFile = sprintf('submit_ex%s_part%d.txt', homework_id(), thisPartId);
|
||||
end
|
||||
|
||||
fid = fopen(saveAsFile, 'w');
|
||||
if (fid)
|
||||
fwrite(fid, result);
|
||||
fclose(fid);
|
||||
fprintf('\nSaved your solutions to %s.\n\n', saveAsFile);
|
||||
fprintf(['You can now submit your solutions through the web \n' ...
|
||||
'form in the programming exercises. Select the corresponding \n' ...
|
||||
'programming exercise to access the form.\n']);
|
||||
|
||||
else
|
||||
fprintf('Unable to save to %s\n\n', saveAsFile);
|
||||
fprintf(['You can create a submission file by saving the \n' ...
|
||||
'following text in a file: (press enter to continue)\n\n']);
|
||||
pause;
|
||||
fprintf(result);
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
% ================== CONFIGURABLES FOR EACH HOMEWORK ==================
|
||||
|
||||
function id = homework_id()
|
||||
id = '6';
|
||||
end
|
||||
|
||||
function [partNames] = validParts()
|
||||
partNames = { 'Gaussian Kernel', ...
|
||||
'Parameters (C, sigma) for Dataset 3', ...
|
||||
'Email Preprocessing' ...
|
||||
'Email Feature Extraction' ...
|
||||
};
|
||||
end
|
||||
|
||||
function srcs = sources()
|
||||
% Separated by part
|
||||
srcs = { { 'gaussianKernel.m' }, ...
|
||||
{ 'dataset3Params.m' }, ...
|
||||
{ 'processEmail.m' }, ...
|
||||
{ 'emailFeatures.m' } };
|
||||
end
|
||||
|
||||
function out = output(partId, auxstring)
|
||||
% Random Test Cases
|
||||
x1 = sin(1:10)';
|
||||
x2 = cos(1:10)';
|
||||
ec = 'the quick brown fox jumped over the lazy dog';
|
||||
wi = 1 + abs(round(x1 * 1863));
|
||||
wi = [wi ; wi];
|
||||
if partId == 1
|
||||
sim = gaussianKernel(x1, x2, 2);
|
||||
out = sprintf('%0.5f ', sim);
|
||||
elseif partId == 2
|
||||
load('ex6data3.mat');
|
||||
[C, sigma] = dataset3Params(X, y, Xval, yval);
|
||||
out = sprintf('%0.5f ', C);
|
||||
out = [out sprintf('%0.5f ', sigma)];
|
||||
elseif partId == 3
|
||||
word_indices = processEmail(ec);
|
||||
out = sprintf('%d ', word_indices);
|
||||
elseif partId == 4
|
||||
x = emailFeatures(wi);
|
||||
out = sprintf('%d ', x);
|
||||
end
|
||||
end
|
||||
|
||||
|
||||
% ====================== SERVER CONFIGURATION ===========================
|
||||
|
||||
% ***************** REMOVE -staging WHEN YOU DEPLOY *********************
|
||||
function url = site_url()
|
||||
url = 'http://class.coursera.org/ml-008';
|
||||
end
|
||||
|
||||
function url = challenge_url()
|
||||
url = [site_url() '/assignment/challenge'];
|
||||
end
|
||||
|
||||
function url = submit_url()
|
||||
url = [site_url() '/assignment/submit'];
|
||||
end
|
||||
|
||||
% ========================= CHALLENGE HELPERS =========================
|
||||
|
||||
function src = source(partId)
|
||||
src = '';
|
||||
src_files = sources();
|
||||
if partId <= numel(src_files)
|
||||
flist = src_files{partId};
|
||||
for i = 1:numel(flist)
|
||||
fid = fopen(flist{i});
|
||||
if (fid == -1)
|
||||
error('Error opening %s (is it missing?)', flist{i});
|
||||
end
|
||||
line = fgets(fid);
|
||||
while ischar(line)
|
||||
src = [src line];
|
||||
line = fgets(fid);
|
||||
end
|
||||
fclose(fid);
|
||||
src = [src '||||||||'];
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
function ret = isValidPartId(partId)
|
||||
partNames = validParts();
|
||||
ret = (~isempty(partId)) && (partId >= 1) && (partId <= numel(partNames) + 1);
|
||||
end
|
||||
|
||||
function partId = promptPart()
|
||||
fprintf('== Select which part(s) to submit:\n');
|
||||
partNames = validParts();
|
||||
srcFiles = sources();
|
||||
for i = 1:numel(partNames)
|
||||
fprintf('== %d) %s [', i, partNames{i});
|
||||
fprintf(' %s ', srcFiles{i}{:});
|
||||
fprintf(']\n');
|
||||
end
|
||||
fprintf('== %d) All of the above \n==\nEnter your choice [1-%d]: ', ...
|
||||
numel(partNames) + 1, numel(partNames) + 1);
|
||||
selPart = input('', 's');
|
||||
partId = str2num(selPart);
|
||||
if ~isValidPartId(partId)
|
||||
partId = -1;
|
||||
end
|
||||
end
|
||||
|
||||
function [email,ch,signature,auxstring] = getChallenge(email, part)
|
||||
str = urlread(challenge_url(), 'post', {'email_address', email, 'assignment_part_sid', [homework_id() '-' num2str(part)], 'response_encoding', 'delim'});
|
||||
|
||||
str = strtrim(str);
|
||||
r = struct;
|
||||
while(numel(str) > 0)
|
||||
[f, str] = strtok (str, '|');
|
||||
[v, str] = strtok (str, '|');
|
||||
r = setfield(r, f, v);
|
||||
end
|
||||
|
||||
email = getfield(r, 'email_address');
|
||||
ch = getfield(r, 'challenge_key');
|
||||
signature = getfield(r, 'state');
|
||||
auxstring = getfield(r, 'challenge_aux_data');
|
||||
end
|
||||
|
||||
function [result, str] = submitSolutionWeb(email, part, output, source)
|
||||
|
||||
result = ['{"assignment_part_sid":"' base64encode([homework_id() '-' num2str(part)], '') '",' ...
|
||||
'"email_address":"' base64encode(email, '') '",' ...
|
||||
'"submission":"' base64encode(output, '') '",' ...
|
||||
'"submission_aux":"' base64encode(source, '') '"' ...
|
||||
'}'];
|
||||
str = 'Web-submission';
|
||||
end
|
||||
|
||||
function [result, str] = submitSolution(email, ch_resp, part, output, ...
|
||||
source, signature)
|
||||
|
||||
params = {'assignment_part_sid', [homework_id() '-' num2str(part)], ...
|
||||
'email_address', email, ...
|
||||
'submission', base64encode(output, ''), ...
|
||||
'submission_aux', base64encode(source, ''), ...
|
||||
'challenge_response', ch_resp, ...
|
||||
'state', signature};
|
||||
|
||||
str = urlread(submit_url(), 'post', params);
|
||||
|
||||
% Parse str to read for success / failure
|
||||
result = 0;
|
||||
|
||||
end
|
||||
|
||||
% =========================== LOGIN HELPERS ===========================
|
||||
|
||||
function [login password] = loginPrompt()
|
||||
% Prompt for password
|
||||
[login password] = basicPrompt();
|
||||
|
||||
if isempty(login) || isempty(password)
|
||||
login = []; password = [];
|
||||
end
|
||||
end
|
||||
|
||||
|
||||
function [login password] = basicPrompt()
|
||||
login = input('Login (Email address): ', 's');
|
||||
password = input('Password: ', 's');
|
||||
end
|
||||
|
||||
function [login password] = quickLogin(login,password)
|
||||
disp(['You are currently logged in as ' login '.']);
|
||||
cont_token = input('Is this you? (y/n - type n to reenter password)','s');
|
||||
if(isempty(cont_token) || cont_token(1)=='Y'||cont_token(1)=='y')
|
||||
return;
|
||||
else
|
||||
[login password] = loginPrompt();
|
||||
end
|
||||
end
|
||||
|
||||
function [str] = challengeResponse(email, passwd, challenge)
|
||||
str = sha1([challenge passwd]);
|
||||
end
|
||||
|
||||
% =============================== SHA-1 ================================
|
||||
|
||||
function hash = sha1(str)
|
||||
|
||||
% Initialize variables
|
||||
h0 = uint32(1732584193);
|
||||
h1 = uint32(4023233417);
|
||||
h2 = uint32(2562383102);
|
||||
h3 = uint32(271733878);
|
||||
h4 = uint32(3285377520);
|
||||
|
||||
% Convert to word array
|
||||
strlen = numel(str);
|
||||
|
||||
% Break string into chars and append the bit 1 to the message
|
||||
mC = [double(str) 128];
|
||||
mC = [mC zeros(1, 4-mod(numel(mC), 4), 'uint8')];
|
||||
|
||||
numB = strlen * 8;
|
||||
if exist('idivide')
|
||||
numC = idivide(uint32(numB + 65), 512, 'ceil');
|
||||
else
|
||||
numC = ceil(double(numB + 65)/512);
|
||||
end
|
||||
numW = numC * 16;
|
||||
mW = zeros(numW, 1, 'uint32');
|
||||
|
||||
idx = 1;
|
||||
for i = 1:4:strlen + 1
|
||||
mW(idx) = bitor(bitor(bitor( ...
|
||||
bitshift(uint32(mC(i)), 24), ...
|
||||
bitshift(uint32(mC(i+1)), 16)), ...
|
||||
bitshift(uint32(mC(i+2)), 8)), ...
|
||||
uint32(mC(i+3)));
|
||||
idx = idx + 1;
|
||||
end
|
||||
|
||||
% Append length of message
|
||||
mW(numW - 1) = uint32(bitshift(uint64(numB), -32));
|
||||
mW(numW) = uint32(bitshift(bitshift(uint64(numB), 32), -32));
|
||||
|
||||
% Process the message in successive 512-bit chs
|
||||
for cId = 1 : double(numC)
|
||||
cSt = (cId - 1) * 16 + 1;
|
||||
cEnd = cId * 16;
|
||||
ch = mW(cSt : cEnd);
|
||||
|
||||
% Extend the sixteen 32-bit words into eighty 32-bit words
|
||||
for j = 17 : 80
|
||||
ch(j) = ch(j - 3);
|
||||
ch(j) = bitxor(ch(j), ch(j - 8));
|
||||
ch(j) = bitxor(ch(j), ch(j - 14));
|
||||
ch(j) = bitxor(ch(j), ch(j - 16));
|
||||
ch(j) = bitrotate(ch(j), 1);
|
||||
end
|
||||
|
||||
% Initialize hash value for this ch
|
||||
a = h0;
|
||||
b = h1;
|
||||
c = h2;
|
||||
d = h3;
|
||||
e = h4;
|
||||
|
||||
% Main loop
|
||||
for i = 1 : 80
|
||||
if(i >= 1 && i <= 20)
|
||||
f = bitor(bitand(b, c), bitand(bitcmp(b), d));
|
||||
k = uint32(1518500249);
|
||||
elseif(i >= 21 && i <= 40)
|
||||
f = bitxor(bitxor(b, c), d);
|
||||
k = uint32(1859775393);
|
||||
elseif(i >= 41 && i <= 60)
|
||||
f = bitor(bitor(bitand(b, c), bitand(b, d)), bitand(c, d));
|
||||
k = uint32(2400959708);
|
||||
elseif(i >= 61 && i <= 80)
|
||||
f = bitxor(bitxor(b, c), d);
|
||||
k = uint32(3395469782);
|
||||
end
|
||||
|
||||
t = bitrotate(a, 5);
|
||||
t = bitadd(t, f);
|
||||
t = bitadd(t, e);
|
||||
t = bitadd(t, k);
|
||||
t = bitadd(t, ch(i));
|
||||
e = d;
|
||||
d = c;
|
||||
c = bitrotate(b, 30);
|
||||
b = a;
|
||||
a = t;
|
||||
|
||||
end
|
||||
h0 = bitadd(h0, a);
|
||||
h1 = bitadd(h1, b);
|
||||
h2 = bitadd(h2, c);
|
||||
h3 = bitadd(h3, d);
|
||||
h4 = bitadd(h4, e);
|
||||
|
||||
end
|
||||
|
||||
hash = reshape(dec2hex(double([h0 h1 h2 h3 h4]), 8)', [1 40]);
|
||||
|
||||
hash = lower(hash);
|
||||
|
||||
end
|
||||
|
||||
function ret = bitadd(iA, iB)
|
||||
ret = double(iA) + double(iB);
|
||||
ret = bitset(ret, 33, 0);
|
||||
ret = uint32(ret);
|
||||
end
|
||||
|
||||
function ret = bitrotate(iA, places)
|
||||
t = bitshift(iA, places - 32);
|
||||
ret = bitshift(iA, places);
|
||||
ret = bitor(ret, t);
|
||||
end
|
||||
|
||||
% =========================== Base64 Encoder ============================
|
||||
% Thanks to Peter John Acklam
|
||||
%
|
||||
|
||||
function y = base64encode(x, eol)
|
||||
%BASE64ENCODE Perform base64 encoding on a string.
|
||||
%
|
||||
% BASE64ENCODE(STR, EOL) encode the given string STR. EOL is the line ending
|
||||
% sequence to use; it is optional and defaults to '\n' (ASCII decimal 10).
|
||||
% The returned encoded string is broken into lines of no more than 76
|
||||
% characters each, and each line will end with EOL unless it is empty. Let
|
||||
% EOL be empty if you do not want the encoded string broken into lines.
|
||||
%
|
||||
% STR and EOL don't have to be strings (i.e., char arrays). The only
|
||||
% requirement is that they are vectors containing values in the range 0-255.
|
||||
%
|
||||
% This function may be used to encode strings into the Base64 encoding
|
||||
% specified in RFC 2045 - MIME (Multipurpose Internet Mail Extensions). The
|
||||
% Base64 encoding is designed to represent arbitrary sequences of octets in a
|
||||
% form that need not be humanly readable. A 65-character subset
|
||||
% ([A-Za-z0-9+/=]) of US-ASCII is used, enabling 6 bits to be represented per
|
||||
% printable character.
|
||||
%
|
||||
% Examples
|
||||
% --------
|
||||
%
|
||||
% If you want to encode a large file, you should encode it in chunks that are
|
||||
% a multiple of 57 bytes. This ensures that the base64 lines line up and
|
||||
% that you do not end up with padding in the middle. 57 bytes of data fills
|
||||
% one complete base64 line (76 == 57*4/3):
|
||||
%
|
||||
% If ifid and ofid are two file identifiers opened for reading and writing,
|
||||
% respectively, then you can base64 encode the data with
|
||||
%
|
||||
% while ~feof(ifid)
|
||||
% fwrite(ofid, base64encode(fread(ifid, 60*57)));
|
||||
% end
|
||||
%
|
||||
% or, if you have enough memory,
|
||||
%
|
||||
% fwrite(ofid, base64encode(fread(ifid)));
|
||||
%
|
||||
% See also BASE64DECODE.
|
||||
|
||||
% Author: Peter John Acklam
|
||||
% Time-stamp: 2004-02-03 21:36:56 +0100
|
||||
% E-mail: pjacklam@online.no
|
||||
% URL: http://home.online.no/~pjacklam
|
||||
|
||||
if isnumeric(x)
|
||||
x = num2str(x);
|
||||
end
|
||||
|
||||
% make sure we have the EOL value
|
||||
if nargin < 2
|
||||
eol = sprintf('\n');
|
||||
else
|
||||
if sum(size(eol) > 1) > 1
|
||||
error('EOL must be a vector.');
|
||||
end
|
||||
if any(eol(:) > 255)
|
||||
error('EOL can not contain values larger than 255.');
|
||||
end
|
||||
end
|
||||
|
||||
if sum(size(x) > 1) > 1
|
||||
error('STR must be a vector.');
|
||||
end
|
||||
|
||||
x = uint8(x);
|
||||
eol = uint8(eol);
|
||||
|
||||
ndbytes = length(x); % number of decoded bytes
|
||||
nchunks = ceil(ndbytes / 3); % number of chunks/groups
|
||||
nebytes = 4 * nchunks; % number of encoded bytes
|
||||
|
||||
% add padding if necessary, to make the length of x a multiple of 3
|
||||
if rem(ndbytes, 3)
|
||||
x(end+1 : 3*nchunks) = 0;
|
||||
end
|
||||
|
||||
x = reshape(x, [3, nchunks]); % reshape the data
|
||||
y = repmat(uint8(0), 4, nchunks); % for the encoded data
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% Split up every 3 bytes into 4 pieces
|
||||
%
|
||||
% aaaaaabb bbbbcccc ccdddddd
|
||||
%
|
||||
% to form
|
||||
%
|
||||
% 00aaaaaa 00bbbbbb 00cccccc 00dddddd
|
||||
%
|
||||
y(1,:) = bitshift(x(1,:), -2); % 6 highest bits of x(1,:)
|
||||
|
||||
y(2,:) = bitshift(bitand(x(1,:), 3), 4); % 2 lowest bits of x(1,:)
|
||||
y(2,:) = bitor(y(2,:), bitshift(x(2,:), -4)); % 4 highest bits of x(2,:)
|
||||
|
||||
y(3,:) = bitshift(bitand(x(2,:), 15), 2); % 4 lowest bits of x(2,:)
|
||||
y(3,:) = bitor(y(3,:), bitshift(x(3,:), -6)); % 2 highest bits of x(3,:)
|
||||
|
||||
y(4,:) = bitand(x(3,:), 63); % 6 lowest bits of x(3,:)
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% Now perform the following mapping
|
||||
%
|
||||
% 0 - 25 -> A-Z
|
||||
% 26 - 51 -> a-z
|
||||
% 52 - 61 -> 0-9
|
||||
% 62 -> +
|
||||
% 63 -> /
|
||||
%
|
||||
% We could use a mapping vector like
|
||||
%
|
||||
% ['A':'Z', 'a':'z', '0':'9', '+/']
|
||||
%
|
||||
% but that would require an index vector of class double.
|
||||
%
|
||||
z = repmat(uint8(0), size(y));
|
||||
i = y <= 25; z(i) = 'A' + double(y(i));
|
||||
i = 26 <= y & y <= 51; z(i) = 'a' - 26 + double(y(i));
|
||||
i = 52 <= y & y <= 61; z(i) = '0' - 52 + double(y(i));
|
||||
i = y == 62; z(i) = '+';
|
||||
i = y == 63; z(i) = '/';
|
||||
y = z;
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% Add padding if necessary.
|
||||
%
|
||||
npbytes = 3 * nchunks - ndbytes; % number of padding bytes
|
||||
if npbytes
|
||||
y(end-npbytes+1 : end) = '='; % '=' is used for padding
|
||||
end
|
||||
|
||||
if isempty(eol)
|
||||
|
||||
% reshape to a row vector
|
||||
y = reshape(y, [1, nebytes]);
|
||||
|
||||
else
|
||||
|
||||
nlines = ceil(nebytes / 76); % number of lines
|
||||
neolbytes = length(eol); % number of bytes in eol string
|
||||
|
||||
% pad data so it becomes a multiple of 76 elements
|
||||
y = [y(:) ; zeros(76 * nlines - numel(y), 1)];
|
||||
y(nebytes + 1 : 76 * nlines) = 0;
|
||||
y = reshape(y, 76, nlines);
|
||||
|
||||
% insert eol strings
|
||||
eol = eol(:);
|
||||
y(end + 1 : end + neolbytes, :) = eol(:, ones(1, nlines));
|
||||
|
||||
% remove padding, but keep the last eol string
|
||||
m = nebytes + neolbytes * (nlines - 1);
|
||||
n = (76+neolbytes)*nlines - neolbytes;
|
||||
y(m+1 : n) = '';
|
||||
|
||||
% extract and reshape to row vector
|
||||
y = reshape(y, 1, m+neolbytes);
|
||||
|
||||
end
|
||||
|
||||
% output is a character array
|
||||
y = char(y);
|
||||
|
||||
end
|
||||
20
machine_learning/course1/mlclass-ex6-008/mlclass-ex6/submitWeb.m
Executable file
20
machine_learning/course1/mlclass-ex6-008/mlclass-ex6/submitWeb.m
Executable file
@@ -0,0 +1,20 @@
|
||||
% submitWeb Creates files from your code and output for web submission.
|
||||
%
|
||||
% If the submit function does not work for you, use the web-submission mechanism.
|
||||
% Call this function to produce a file for the part you wish to submit. Then,
|
||||
% submit the file to the class servers using the "Web Submission" button on the
|
||||
% Programming Exercises page on the course website.
|
||||
%
|
||||
% You should call this function without arguments (submitWeb), to receive
|
||||
% an interactive prompt for submission; optionally you can call it with the partID
|
||||
% if you so wish. Make sure your working directory is set to the directory
|
||||
% containing the submitWeb.m file and your assignment files.
|
||||
|
||||
function submitWeb(partId)
|
||||
if ~exist('partId', 'var') || isempty(partId)
|
||||
partId = [];
|
||||
end
|
||||
|
||||
submit(partId, 1);
|
||||
end
|
||||
|
||||
54
machine_learning/course1/mlclass-ex6-008/mlclass-ex6/svmPredict.m
Executable file
54
machine_learning/course1/mlclass-ex6-008/mlclass-ex6/svmPredict.m
Executable file
@@ -0,0 +1,54 @@
|
||||
function pred = svmPredict(model, X)
|
||||
%SVMPREDICT returns a vector of predictions using a trained SVM model
|
||||
%(svmTrain).
|
||||
% pred = SVMPREDICT(model, X) returns a vector of predictions using a
|
||||
% trained SVM model (svmTrain). X is a mxn matrix where there each
|
||||
% example is a row. model is a svm model returned from svmTrain.
|
||||
% predictions pred is a m x 1 column of predictions of {0, 1} values.
|
||||
%
|
||||
|
||||
% Check if we are getting a column vector, if so, then assume that we only
|
||||
% need to do prediction for a single example
|
||||
if (size(X, 2) == 1)
|
||||
% Examples should be in rows
|
||||
X = X';
|
||||
end
|
||||
|
||||
% Dataset
|
||||
m = size(X, 1);
|
||||
p = zeros(m, 1);
|
||||
pred = zeros(m, 1);
|
||||
|
||||
if strcmp(func2str(model.kernelFunction), 'linearKernel')
|
||||
% We can use the weights and bias directly if working with the
|
||||
% linear kernel
|
||||
p = X * model.w + model.b;
|
||||
elseif strfind(func2str(model.kernelFunction), 'gaussianKernel')
|
||||
% Vectorized RBF Kernel
|
||||
% This is equivalent to computing the kernel on every pair of examples
|
||||
X1 = sum(X.^2, 2);
|
||||
X2 = sum(model.X.^2, 2)';
|
||||
K = bsxfun(@plus, X1, bsxfun(@plus, X2, - 2 * X * model.X'));
|
||||
K = model.kernelFunction(1, 0) .^ K;
|
||||
K = bsxfun(@times, model.y', K);
|
||||
K = bsxfun(@times, model.alphas', K);
|
||||
p = sum(K, 2);
|
||||
else
|
||||
% Other Non-linear kernel
|
||||
for i = 1:m
|
||||
prediction = 0;
|
||||
for j = 1:size(model.X, 1)
|
||||
prediction = prediction + ...
|
||||
model.alphas(j) * model.y(j) * ...
|
||||
model.kernelFunction(X(i,:)', model.X(j,:)');
|
||||
end
|
||||
p(i) = prediction + model.b;
|
||||
end
|
||||
end
|
||||
|
||||
% Convert predictions into 0 / 1
|
||||
pred(p >= 0) = 1;
|
||||
pred(p < 0) = 0;
|
||||
|
||||
end
|
||||
|
||||
192
machine_learning/course1/mlclass-ex6-008/mlclass-ex6/svmTrain.m
Executable file
192
machine_learning/course1/mlclass-ex6-008/mlclass-ex6/svmTrain.m
Executable file
@@ -0,0 +1,192 @@
|
||||
function [model] = svmTrain(X, Y, C, kernelFunction, ...
|
||||
tol, max_passes)
|
||||
%SVMTRAIN Trains an SVM classifier using a simplified version of the SMO
|
||||
%algorithm.
|
||||
% [model] = SVMTRAIN(X, Y, C, kernelFunction, tol, max_passes) trains an
|
||||
% SVM classifier and returns trained model. X is the matrix of training
|
||||
% examples. Each row is a training example, and the jth column holds the
|
||||
% jth feature. Y is a column matrix containing 1 for positive examples
|
||||
% and 0 for negative examples. C is the standard SVM regularization
|
||||
% parameter. tol is a tolerance value used for determining equality of
|
||||
% floating point numbers. max_passes controls the number of iterations
|
||||
% over the dataset (without changes to alpha) before the algorithm quits.
|
||||
%
|
||||
% Note: This is a simplified version of the SMO algorithm for training
|
||||
% SVMs. In practice, if you want to train an SVM classifier, we
|
||||
% recommend using an optimized package such as:
|
||||
%
|
||||
% LIBSVM (http://www.csie.ntu.edu.tw/~cjlin/libsvm/)
|
||||
% SVMLight (http://svmlight.joachims.org/)
|
||||
%
|
||||
%
|
||||
|
||||
if ~exist('tol', 'var') || isempty(tol)
|
||||
tol = 1e-3;
|
||||
end
|
||||
|
||||
if ~exist('max_passes', 'var') || isempty(max_passes)
|
||||
max_passes = 5;
|
||||
end
|
||||
|
||||
% Data parameters
|
||||
m = size(X, 1);
|
||||
n = size(X, 2);
|
||||
|
||||
% Map 0 to -1
|
||||
Y(Y==0) = -1;
|
||||
|
||||
% Variables
|
||||
alphas = zeros(m, 1);
|
||||
b = 0;
|
||||
E = zeros(m, 1);
|
||||
passes = 0;
|
||||
eta = 0;
|
||||
L = 0;
|
||||
H = 0;
|
||||
|
||||
% Pre-compute the Kernel Matrix since our dataset is small
|
||||
% (in practice, optimized SVM packages that handle large datasets
|
||||
% gracefully will _not_ do this)
|
||||
%
|
||||
% We have implemented optimized vectorized version of the Kernels here so
|
||||
% that the svm training will run faster.
|
||||
if strcmp(func2str(kernelFunction), 'linearKernel')
|
||||
% Vectorized computation for the Linear Kernel
|
||||
% This is equivalent to computing the kernel on every pair of examples
|
||||
K = X*X';
|
||||
elseif strfind(func2str(kernelFunction), 'gaussianKernel')
|
||||
% Vectorized RBF Kernel
|
||||
% This is equivalent to computing the kernel on every pair of examples
|
||||
X2 = sum(X.^2, 2);
|
||||
K = bsxfun(@plus, X2, bsxfun(@plus, X2', - 2 * (X * X')));
|
||||
K = kernelFunction(1, 0) .^ K;
|
||||
else
|
||||
% Pre-compute the Kernel Matrix
|
||||
% The following can be slow due to the lack of vectorization
|
||||
K = zeros(m);
|
||||
for i = 1:m
|
||||
for j = i:m
|
||||
K(i,j) = kernelFunction(X(i,:)', X(j,:)');
|
||||
K(j,i) = K(i,j); %the matrix is symmetric
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
% Train
|
||||
fprintf('\nTraining ...');
|
||||
dots = 12;
|
||||
while passes < max_passes,
|
||||
|
||||
num_changed_alphas = 0;
|
||||
for i = 1:m,
|
||||
|
||||
% Calculate Ei = f(x(i)) - y(i) using (2).
|
||||
% E(i) = b + sum (X(i, :) * (repmat(alphas.*Y,1,n).*X)') - Y(i);
|
||||
E(i) = b + sum (alphas.*Y.*K(:,i)) - Y(i);
|
||||
|
||||
if ((Y(i)*E(i) < -tol && alphas(i) < C) || (Y(i)*E(i) > tol && alphas(i) > 0)),
|
||||
|
||||
% In practice, there are many heuristics one can use to select
|
||||
% the i and j. In this simplified code, we select them randomly.
|
||||
j = ceil(m * rand());
|
||||
while j == i, % Make sure i \neq j
|
||||
j = ceil(m * rand());
|
||||
end
|
||||
|
||||
% Calculate Ej = f(x(j)) - y(j) using (2).
|
||||
E(j) = b + sum (alphas.*Y.*K(:,j)) - Y(j);
|
||||
|
||||
% Save old alphas
|
||||
alpha_i_old = alphas(i);
|
||||
alpha_j_old = alphas(j);
|
||||
|
||||
% Compute L and H by (10) or (11).
|
||||
if (Y(i) == Y(j)),
|
||||
L = max(0, alphas(j) + alphas(i) - C);
|
||||
H = min(C, alphas(j) + alphas(i));
|
||||
else
|
||||
L = max(0, alphas(j) - alphas(i));
|
||||
H = min(C, C + alphas(j) - alphas(i));
|
||||
end
|
||||
|
||||
if (L == H),
|
||||
% continue to next i.
|
||||
continue;
|
||||
end
|
||||
|
||||
% Compute eta by (14).
|
||||
eta = 2 * K(i,j) - K(i,i) - K(j,j);
|
||||
if (eta >= 0),
|
||||
% continue to next i.
|
||||
continue;
|
||||
end
|
||||
|
||||
% Compute and clip new value for alpha j using (12) and (15).
|
||||
alphas(j) = alphas(j) - (Y(j) * (E(i) - E(j))) / eta;
|
||||
|
||||
% Clip
|
||||
alphas(j) = min (H, alphas(j));
|
||||
alphas(j) = max (L, alphas(j));
|
||||
|
||||
% Check if change in alpha is significant
|
||||
if (abs(alphas(j) - alpha_j_old) < tol),
|
||||
% continue to next i.
|
||||
% replace anyway
|
||||
alphas(j) = alpha_j_old;
|
||||
continue;
|
||||
end
|
||||
|
||||
% Determine value for alpha i using (16).
|
||||
alphas(i) = alphas(i) + Y(i)*Y(j)*(alpha_j_old - alphas(j));
|
||||
|
||||
% Compute b1 and b2 using (17) and (18) respectively.
|
||||
b1 = b - E(i) ...
|
||||
- Y(i) * (alphas(i) - alpha_i_old) * K(i,j)' ...
|
||||
- Y(j) * (alphas(j) - alpha_j_old) * K(i,j)';
|
||||
b2 = b - E(j) ...
|
||||
- Y(i) * (alphas(i) - alpha_i_old) * K(i,j)' ...
|
||||
- Y(j) * (alphas(j) - alpha_j_old) * K(j,j)';
|
||||
|
||||
% Compute b by (19).
|
||||
if (0 < alphas(i) && alphas(i) < C),
|
||||
b = b1;
|
||||
elseif (0 < alphas(j) && alphas(j) < C),
|
||||
b = b2;
|
||||
else
|
||||
b = (b1+b2)/2;
|
||||
end
|
||||
|
||||
num_changed_alphas = num_changed_alphas + 1;
|
||||
|
||||
end
|
||||
|
||||
end
|
||||
|
||||
if (num_changed_alphas == 0),
|
||||
passes = passes + 1;
|
||||
else
|
||||
passes = 0;
|
||||
end
|
||||
|
||||
fprintf('.');
|
||||
dots = dots + 1;
|
||||
if dots > 78
|
||||
dots = 0;
|
||||
fprintf('\n');
|
||||
end
|
||||
if exist('OCTAVE_VERSION')
|
||||
fflush(stdout);
|
||||
end
|
||||
end
|
||||
fprintf(' Done! \n\n');
|
||||
|
||||
% Save the model
|
||||
idx = alphas > 0;
|
||||
model.X= X(idx,:);
|
||||
model.y= Y(idx);
|
||||
model.kernelFunction = kernelFunction;
|
||||
model.b= b;
|
||||
model.alphas= alphas(idx);
|
||||
model.w = ((alphas.*Y)'*X)';
|
||||
|
||||
end
|
||||
24
machine_learning/course1/mlclass-ex6-008/mlclass-ex6/visualizeBoundary.m
Executable file
24
machine_learning/course1/mlclass-ex6-008/mlclass-ex6/visualizeBoundary.m
Executable file
@@ -0,0 +1,24 @@
|
||||
function visualizeBoundary(X, y, model, varargin)
|
||||
%VISUALIZEBOUNDARY plots a non-linear decision boundary learned by the SVM
|
||||
% VISUALIZEBOUNDARYLINEAR(X, y, model) plots a non-linear decision
|
||||
% boundary learned by the SVM and overlays the data on it
|
||||
|
||||
% Plot the training data on top of the boundary
|
||||
plotData(X, y)
|
||||
|
||||
% Make classification predictions over a grid of values
|
||||
x1plot = linspace(min(X(:,1)), max(X(:,1)), 100)';
|
||||
x2plot = linspace(min(X(:,2)), max(X(:,2)), 100)';
|
||||
[X1, X2] = meshgrid(x1plot, x2plot);
|
||||
vals = zeros(size(X1));
|
||||
for i = 1:size(X1, 2)
|
||||
this_X = [X1(:, i), X2(:, i)];
|
||||
vals(:, i) = svmPredict(model, this_X);
|
||||
end
|
||||
|
||||
% Plot the SVM boundary
|
||||
hold on
|
||||
contour(X1, X2, vals, [0 0], 'Color', 'b');
|
||||
hold off;
|
||||
|
||||
end
|
||||
@@ -0,0 +1,16 @@
|
||||
function visualizeBoundaryLinear(X, y, model)
|
||||
%VISUALIZEBOUNDARYLINEAR plots a linear decision boundary learned by the
|
||||
%SVM
|
||||
% VISUALIZEBOUNDARYLINEAR(X, y, model) plots a linear decision boundary
|
||||
% learned by the SVM and overlays the data on it
|
||||
|
||||
w = model.w;
|
||||
b = model.b;
|
||||
xp = linspace(min(X(:,1)), max(X(:,1)), 100);
|
||||
yp = - (w(1)*xp + b)/w(2);
|
||||
plotData(X, y);
|
||||
hold on;
|
||||
plot(xp, yp, '-b');
|
||||
hold off
|
||||
|
||||
end
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user