Moving course1 to course1 subdir.

This commit is contained in:
2017-02-12 08:17:57 +00:00
parent f26649af32
commit 0f459c597c
143 changed files with 0 additions and 0 deletions

Binary file not shown.

View File

@@ -0,0 +1,22 @@
function J = computeCost(X, y, theta)
%COMPUTECOST Compute cost for linear regression
% J = COMPUTECOST(X, y, theta) computes the cost of using theta as the
% parameter for linear regression to fit the data points in X and y
% Initialize some useful values
m = length(y); % number of training examples
% You need to return the following variables correctly
J = 0;
% ====================== YOUR CODE HERE ======================
% Instructions: Compute the cost of a particular choice of theta
% You should set J to the cost.
%X = [ones(m,1) X];
J = sum( (X*theta - y) .^ 2 ) / (2*m);
% =========================================================================
end

View File

@@ -0,0 +1,22 @@
function J = computeCostMulti(X, y, theta)
%COMPUTECOSTMULTI Compute cost for linear regression with multiple variables
% J = COMPUTECOSTMULTI(X, y, theta) computes the cost of using theta as the
% parameter for linear regression to fit the data points in X and y
% Initialize some useful values
m = length(y); % number of training examples
% You need to return the following variables correctly
J = 0;
% ====================== YOUR CODE HERE ======================
% Instructions: Compute the cost of a particular choice of theta
% You should set J to the cost.
J = sum( (X*theta - y) .^ 2 ) / (2*m);
% =========================================================================
end

View File

@@ -0,0 +1,122 @@
%% Machine Learning Online Class - Exercise 1: Linear Regression
% Instructions
% ------------
%
% This file contains code that helps you get started on the
% linear exercise. You will need to complete the following functions
% in this exericse:
%
% warmUpExercise.m
% plotData.m
% gradientDescent.m
% computeCost.m
% gradientDescentMulti.m
% computeCostMulti.m
% featureNormalize.m
% normalEqn.m
%
% For this exercise, you will not need to change any code in this file,
% or any other files other than those mentioned above.
%
% x refers to the population size in 10,000s
% y refers to the profit in $10,000s
%
%% Initialization
clear ; close all; clc
%% ==================== Part 1: Basic Function ====================
% Complete warmUpExercise.m
fprintf('Running warmUpExercise ... \n');
fprintf('5x5 Identity Matrix: \n');
warmUpExercise()
fprintf('Program paused. Press enter to continue.\n');
pause;
%% ======================= Part 2: Plotting =======================
fprintf('Plotting Data ...\n')
data = load('ex1data1.txt');
X = data(:, 1); y = data(:, 2);
m = length(y); % number of training examples
% Plot Data
% Note: You have to complete the code in plotData.m
plotData(X, y);
fprintf('Program paused. Press enter to continue.\n');
pause;
%% =================== Part 3: Gradient descent ===================
fprintf('Running Gradient Descent ...\n')
X = [ones(m, 1), data(:,1)]; % Add a column of ones to x
theta = zeros(2, 1); % initialize fitting parameters
% Some gradient descent settings
iterations = 1500;
alpha = 0.01;
% compute and display initial cost
computeCost(X, y, theta)
% run gradient descent
theta = gradientDescent(X, y, theta, alpha, iterations);
% print theta to screen
fprintf('Theta found by gradient descent: ');
fprintf('%f %f \n', theta(1), theta(2));
% Plot the linear fit
hold on; % keep previous plot visible
plot(X(:,2), X*theta, '-')
legend('Training data', 'Linear regression')
hold off % don't overlay any more plots on this figure
% Predict values for population sizes of 35,000 and 70,000
predict1 = [1, 3.5] *theta;
fprintf('For population = 35,000, we predict a profit of %f\n',...
predict1*10000);
predict2 = [1, 7] * theta;
fprintf('For population = 70,000, we predict a profit of %f\n',...
predict2*10000);
fprintf('Program paused. Press enter to continue.\n');
pause;
%% ============= Part 4: Visualizing J(theta_0, theta_1) =============
fprintf('Visualizing J(theta_0, theta_1) ...\n')
% Grid over which we will calculate J
theta0_vals = linspace(-10, 10, 100);
theta1_vals = linspace(-1, 4, 100);
% initialize J_vals to a matrix of 0's
J_vals = zeros(length(theta0_vals), length(theta1_vals));
% Fill out J_vals
for i = 1:length(theta0_vals)
for j = 1:length(theta1_vals)
t = [theta0_vals(i); theta1_vals(j)];
J_vals(i,j) = computeCost(X, y, t);
end
end
% Because of the way meshgrids work in the surf command, we need to
% transpose J_vals before calling surf, or else the axes will be flipped
J_vals = J_vals';
% Surface plot
figure;
surf(theta0_vals, theta1_vals, J_vals)
xlabel('\theta_0'); ylabel('\theta_1');
% Contour plot
figure;
% Plot J_vals as 15 contours spaced logarithmically between 0.01 and 100
contour(theta0_vals, theta1_vals, J_vals, logspace(-2, 3, 20))
xlabel('\theta_0'); ylabel('\theta_1');
hold on;
plot(theta(1), theta(2), 'rx', 'MarkerSize', 10, 'LineWidth', 2);

View File

@@ -0,0 +1,159 @@
%% Machine Learning Online Class
% Exercise 1: Linear regression with multiple variables
%
% Instructions
% ------------
%
% This file contains code that helps you get started on the
% linear regression exercise.
%
% You will need to complete the following functions in this
% exericse:
%
% warmUpExercise.m
% plotData.m
% gradientDescent.m
% computeCost.m
% gradientDescentMulti.m
% computeCostMulti.m
% featureNormalize.m
% normalEqn.m
%
% For this part of the exercise, you will need to change some
% parts of the code below for various experiments (e.g., changing
% learning rates).
%
%% Initialization
%% ================ Part 1: Feature Normalization ================
%% Clear and Close Figures
clear ; close all; clc
fprintf('Loading data ...\n');
%% Load Data
data = load('ex1data2.txt');
X = data(:, 1:2);
y = data(:, 3);
m = length(y);
% Print out some data points
fprintf('First 10 examples from the dataset: \n');
fprintf(' x = [%.0f %.0f], y = %.0f \n', [X(1:10,:) y(1:10,:)]');
fprintf('Program paused. Press enter to continue.\n');
pause;
% Scale features and set them to zero mean
fprintf('Normalizing Features ...\n');
[X mu sigma] = featureNormalize(X);
% Add intercept term to X
X = [ones(m, 1) X];
%% ================ Part 2: Gradient Descent ================
% ====================== YOUR CODE HERE ======================
% Instructions: We have provided you with the following starter
% code that runs gradient descent with a particular
% learning rate (alpha).
%
% Your task is to first make sure that your functions -
% computeCost and gradientDescent already work with
% this starter code and support multiple variables.
%
% After that, try running gradient descent with
% different values of alpha and see which one gives
% you the best result.
%
% Finally, you should complete the code at the end
% to predict the price of a 1650 sq-ft, 3 br house.
%
% Hint: By using the 'hold on' command, you can plot multiple
% graphs on the same figure.
%
% Hint: At prediction, make sure you do the same feature normalization.
%
fprintf('Running gradient descent ...\n');
% Choose some alpha value
alpha = 0.01;
num_iters = 400;
% Init Theta and Run Gradient Descent
theta = zeros(3, 1);
[theta, J_history] = gradientDescentMulti(X, y, theta, alpha, num_iters);
% Plot the convergence graph
figure;
plot(1:numel(J_history), J_history, '-b', 'LineWidth', 2);
xlabel('Number of iterations');
ylabel('Cost J');
% Display gradient descent's result
fprintf('Theta computed from gradient descent: \n');
fprintf(' %f \n', theta);
fprintf('\n');
% Estimate the price of a 1650 sq-ft, 3 br house
% ====================== YOUR CODE HERE ======================
% Recall that the first column of X is all-ones. Thus, it does
% not need to be normalized.
price = 0; % You should change this
% ============================================================
fprintf(['Predicted price of a 1650 sq-ft, 3 br house ' ...
'(using gradient descent):\n $%f\n'], price);
fprintf('Program paused. Press enter to continue.\n');
pause;
%% ================ Part 3: Normal Equations ================
fprintf('Solving with normal equations...\n');
% ====================== YOUR CODE HERE ======================
% Instructions: The following code computes the closed form
% solution for linear regression using the normal
% equations. You should complete the code in
% normalEqn.m
%
% After doing so, you should complete this code
% to predict the price of a 1650 sq-ft, 3 br house.
%
%% Load Data
data = csvread('ex1data2.txt');
X = data(:, 1:2);
y = data(:, 3);
m = length(y);
% Add intercept term to X
X = [ones(m, 1) X];
% Calculate the parameters from the normal equation
theta = normalEqn(X, y);
% Display normal equation's result
fprintf('Theta computed from the normal equations: \n');
fprintf(' %f \n', theta);
fprintf('\n');
% Estimate the price of a 1650 sq-ft, 3 br house
% ====================== YOUR CODE HERE ======================
price = 0; % You should change this
% ============================================================
fprintf(['Predicted price of a 1650 sq-ft, 3 br house ' ...
'(using normal equations):\n $%f\n'], price);

View File

@@ -0,0 +1,97 @@
6.1101,17.592
5.5277,9.1302
8.5186,13.662
7.0032,11.854
5.8598,6.8233
8.3829,11.886
7.4764,4.3483
8.5781,12
6.4862,6.5987
5.0546,3.8166
5.7107,3.2522
14.164,15.505
5.734,3.1551
8.4084,7.2258
5.6407,0.71618
5.3794,3.5129
6.3654,5.3048
5.1301,0.56077
6.4296,3.6518
7.0708,5.3893
6.1891,3.1386
20.27,21.767
5.4901,4.263
6.3261,5.1875
5.5649,3.0825
18.945,22.638
12.828,13.501
10.957,7.0467
13.176,14.692
22.203,24.147
5.2524,-1.22
6.5894,5.9966
9.2482,12.134
5.8918,1.8495
8.2111,6.5426
7.9334,4.5623
8.0959,4.1164
5.6063,3.3928
12.836,10.117
6.3534,5.4974
5.4069,0.55657
6.8825,3.9115
11.708,5.3854
5.7737,2.4406
7.8247,6.7318
7.0931,1.0463
5.0702,5.1337
5.8014,1.844
11.7,8.0043
5.5416,1.0179
7.5402,6.7504
5.3077,1.8396
7.4239,4.2885
7.6031,4.9981
6.3328,1.4233
6.3589,-1.4211
6.2742,2.4756
5.6397,4.6042
9.3102,3.9624
9.4536,5.4141
8.8254,5.1694
5.1793,-0.74279
21.279,17.929
14.908,12.054
18.959,17.054
7.2182,4.8852
8.2951,5.7442
10.236,7.7754
5.4994,1.0173
20.341,20.992
10.136,6.6799
7.3345,4.0259
6.0062,1.2784
7.2259,3.3411
5.0269,-2.6807
6.5479,0.29678
7.5386,3.8845
5.0365,5.7014
10.274,6.7526
5.1077,2.0576
5.7292,0.47953
5.1884,0.20421
6.3557,0.67861
9.7687,7.5435
6.5159,5.3436
8.5172,4.2415
9.1802,6.7981
6.002,0.92695
5.5204,0.152
5.0594,2.8214
5.7077,1.8451
7.6366,4.2959
5.8707,7.2029
5.3054,1.9869
8.2934,0.14454
13.394,9.0551
5.4369,0.61705

View File

@@ -0,0 +1,47 @@
2104,3,399900
1600,3,329900
2400,3,369000
1416,2,232000
3000,4,539900
1985,4,299900
1534,3,314900
1427,3,198999
1380,3,212000
1494,3,242500
1940,4,239999
2000,3,347000
1890,3,329999
4478,5,699900
1268,3,259900
2300,4,449900
1320,2,299900
1236,3,199900
2609,4,499998
3031,4,599000
1767,3,252900
1888,2,255000
1604,3,242900
1962,4,259900
3890,3,573900
1100,3,249900
1458,3,464500
2526,3,469000
2200,3,475000
2637,3,299900
1839,2,349900
1000,1,169900
2040,4,314900
3137,3,579900
1811,4,285900
1437,3,249900
1239,3,229900
2132,4,345000
4215,4,549000
2162,4,287000
1664,2,368500
2238,3,329900
2567,4,314000
1200,3,299000
852,2,179900
1852,4,299900
1203,3,239500

View File

@@ -0,0 +1,39 @@
function [X_norm, mu, sigma] = featureNormalize(X)
%FEATURENORMALIZE Normalizes the features in X
% FEATURENORMALIZE(X) returns a normalized version of X where
% the mean value of each feature is 0 and the standard deviation
% is 1. This is often a good preprocessing step to do when
% working with learning algorithms.
% You need to set these values correctly
X_norm = X;
mu = zeros(1, size(X, 2));
sigma = zeros(1, size(X, 2));
% ====================== YOUR CODE HERE ======================
% Instructions: First, for each feature dimension, compute the mean
% of the feature and subtract it from the dataset,
% storing the mean value in mu. Next, compute the
% standard deviation of each feature and divide
% each feature by it's standard deviation, storing
% the standard deviation in sigma.
%
% Note that X is a matrix where each column is a
% feature and each row is an example. You need
% to perform the normalization separately for
% each feature.
%
% Hint: You might find the 'mean' and 'std' functions useful.
%
mu = mean(X);
sigma = std(X);
X_norm = (X - repmat( mu, size(X,1), 1 )) ./ repmat( sigma, size(X,1), 1 );
% ============================================================
end

View File

@@ -0,0 +1,33 @@
function [theta, J_history] = gradientDescent(X, y, theta, alpha, num_iters)
%GRADIENTDESCENT Performs gradient descent to learn theta
% theta = GRADIENTDESENT(X, y, theta, alpha, num_iters) updates theta by
% taking num_iters gradient steps with learning rate alpha
% Initialize some useful values
m = length(y); % number of training examples
J_history = zeros(num_iters, 1);
for iter = 1:num_iters
% ====================== YOUR CODE HERE ======================
% Instructions: Perform a single gradient step on the parameter vector
% theta.
%
% Hint: While debugging, it can be useful to print out the values
% of the cost function (computeCost) and gradient here.
%
theta = theta - alpha * (X' * (X*theta-y) / m);
% ============================================================
% Save the cost J in every iteration
J_history(iter) = computeCost(X, y, theta);
end
end

View File

@@ -0,0 +1,37 @@
function [theta, J_history] = gradientDescentMulti(X, y, theta, alpha, num_iters)
%GRADIENTDESCENTMULTI Performs gradient descent to learn theta
% theta = GRADIENTDESCENTMULTI(x, y, theta, alpha, num_iters) updates theta by
% taking num_iters gradient steps with learning rate alpha
% Initialize some useful values
m = length(y); % number of training examples
J_history = zeros(num_iters, 1);
for iter = 1:num_iters
% ====================== YOUR CODE HERE ======================
% Instructions: Perform a single gradient step on the parameter vector
% theta.
%
% Hint: While debugging, it can be useful to print out the values
% of the cost function (computeCostMulti) and gradient here.
%
theta = theta - alpha * (X' * (X*theta-y) / m);
% ============================================================
% Save the cost J in every iteration
J_history(iter) = computeCostMulti(X, y, theta);
end
end

View File

@@ -0,0 +1,23 @@
function [theta] = normalEqn(X, y)
%NORMALEQN Computes the closed-form solution to linear regression
% NORMALEQN(X,y) computes the closed-form solution to linear
% regression using the normal equations.
theta = zeros(size(X, 2), 1);
% ====================== YOUR CODE HERE ======================
% Instructions: Complete the code to compute the closed form solution
% to linear regression and put the result in theta.
%
% ---------------------- Sample Solution ----------------------
theta = pinv(X'*X)*X'*y;
% -------------------------------------------------------------
% ============================================================
end

View File

@@ -0,0 +1,26 @@
function plotData(x, y)
%PLOTDATA Plots the data points x and y into a new figure
% PLOTDATA(x,y) plots the data points and gives the figure axes labels of
% population and profit.
% ====================== YOUR CODE HERE ======================
% Instructions: Plot the training data into a figure using the
% "figure" and "plot" commands. Set the axes labels using
% the "xlabel" and "ylabel" commands. Assume the
% population and revenue data have been passed in
% as the x and y arguments of this function.
%
% Hint: You can use the 'rx' option with plot to have the markers
% appear as red crosses. Furthermore, you can make the
% markers larger by using plot(..., 'rx', 'MarkerSize', 10);
figure; % open a new figure window
% ============================================================
end

View File

@@ -0,0 +1,577 @@
function submit(partId, webSubmit)
%SUBMIT Submit your code and output to the ml-class servers
% SUBMIT() will connect to the ml-class server and submit your solution
fprintf('==\n== [ml-class] Submitting Solutions | Programming Exercise %s\n==\n', ...
homework_id());
if ~exist('partId', 'var') || isempty(partId)
partId = promptPart();
end
if ~exist('webSubmit', 'var') || isempty(webSubmit)
webSubmit = 0; % submit directly by default
end
% Check valid partId
partNames = validParts();
if ~isValidPartId(partId)
fprintf('!! Invalid homework part selected.\n');
fprintf('!! Expected an integer from 1 to %d.\n', numel(partNames) + 1);
fprintf('!! Submission Cancelled\n');
return
end
if ~exist('ml_login_data.mat','file')
[login password] = loginPrompt();
save('ml_login_data.mat','login','password');
else
load('ml_login_data.mat');
[login password] = quickLogin(login, password);
save('ml_login_data.mat','login','password');
end
if isempty(login)
fprintf('!! Submission Cancelled\n');
return
end
fprintf('\n== Connecting to ml-class ... ');
if exist('OCTAVE_VERSION')
fflush(stdout);
end
% Setup submit list
if partId == numel(partNames) + 1
submitParts = 1:numel(partNames);
else
submitParts = [partId];
end
for s = 1:numel(submitParts)
thisPartId = submitParts(s);
if (~webSubmit) % submit directly to server
[login, ch, signature, auxstring] = getChallenge(login, thisPartId);
if isempty(login) || isempty(ch) || isempty(signature)
% Some error occured, error string in first return element.
fprintf('\n!! Error: %s\n\n', login);
return
end
% Attempt Submission with Challenge
ch_resp = challengeResponse(login, password, ch);
[result, str] = submitSolution(login, ch_resp, thisPartId, ...
output(thisPartId, auxstring), source(thisPartId), signature);
partName = partNames{thisPartId};
fprintf('\n== [ml-class] Submitted Assignment %s - Part %d - %s\n', ...
homework_id(), thisPartId, partName);
fprintf('== %s\n', strtrim(str));
if exist('OCTAVE_VERSION')
fflush(stdout);
end
else
[result] = submitSolutionWeb(login, thisPartId, output(thisPartId), ...
source(thisPartId));
result = base64encode(result);
fprintf('\nSave as submission file [submit_ex%s_part%d.txt (enter to accept default)]:', ...
homework_id(), thisPartId);
saveAsFile = input('', 's');
if (isempty(saveAsFile))
saveAsFile = sprintf('submit_ex%s_part%d.txt', homework_id(), thisPartId);
end
fid = fopen(saveAsFile, 'w');
if (fid)
fwrite(fid, result);
fclose(fid);
fprintf('\nSaved your solutions to %s.\n\n', saveAsFile);
fprintf(['You can now submit your solutions through the web \n' ...
'form in the programming exercises. Select the corresponding \n' ...
'programming exercise to access the form.\n']);
else
fprintf('Unable to save to %s\n\n', saveAsFile);
fprintf(['You can create a submission file by saving the \n' ...
'following text in a file: (press enter to continue)\n\n']);
pause;
fprintf(result);
end
end
end
end
% ================== CONFIGURABLES FOR EACH HOMEWORK ==================
function id = homework_id()
id = '1';
end
function [partNames] = validParts()
partNames = { 'Warm up exercise ', ...
'Computing Cost (for one variable)', ...
'Gradient Descent (for one variable)', ...
'Feature Normalization', ...
'Computing Cost (for multiple variables)', ...
'Gradient Descent (for multiple variables)', ...
'Normal Equations'};
end
function srcs = sources()
% Separated by part
srcs = { { 'warmUpExercise.m' }, ...
{ 'computeCost.m' }, ...
{ 'gradientDescent.m' }, ...
{ 'featureNormalize.m' }, ...
{ 'computeCostMulti.m' }, ...
{ 'gradientDescentMulti.m' }, ...
{ 'normalEqn.m' }, ...
};
end
function out = output(partId, auxstring)
% Random Test Cases
X1 = [ones(20,1) (exp(1) + exp(2) * (0.1:0.1:2))'];
Y1 = X1(:,2) + sin(X1(:,1)) + cos(X1(:,2));
X2 = [X1 X1(:,2).^0.5 X1(:,2).^0.25];
Y2 = Y1.^0.5 + Y1;
if partId == 1
out = sprintf('%0.5f ', warmUpExercise());
elseif partId == 2
out = sprintf('%0.5f ', computeCost(X1, Y1, [0.5 -0.5]'));
elseif partId == 3
out = sprintf('%0.5f ', gradientDescent(X1, Y1, [0.5 -0.5]', 0.01, 10));
elseif partId == 4
out = sprintf('%0.5f ', featureNormalize(X2(:,2:4)));
elseif partId == 5
out = sprintf('%0.5f ', computeCostMulti(X2, Y2, [0.1 0.2 0.3 0.4]'));
elseif partId == 6
out = sprintf('%0.5f ', gradientDescentMulti(X2, Y2, [-0.1 -0.2 -0.3 -0.4]', 0.01, 10));
elseif partId == 7
out = sprintf('%0.5f ', normalEqn(X2, Y2));
end
end
% ====================== SERVER CONFIGURATION ===========================
% ***************** REMOVE -staging WHEN YOU DEPLOY *********************
function url = site_url()
url = 'http://class.coursera.org/ml-008';
end
function url = challenge_url()
url = [site_url() '/assignment/challenge'];
end
function url = submit_url()
url = [site_url() '/assignment/submit'];
end
% ========================= CHALLENGE HELPERS =========================
function src = source(partId)
src = '';
src_files = sources();
if partId <= numel(src_files)
flist = src_files{partId};
for i = 1:numel(flist)
fid = fopen(flist{i});
if (fid == -1)
error('Error opening %s (is it missing?)', flist{i});
end
line = fgets(fid);
while ischar(line)
src = [src line];
line = fgets(fid);
end
fclose(fid);
src = [src '||||||||'];
end
end
end
function ret = isValidPartId(partId)
partNames = validParts();
ret = (~isempty(partId)) && (partId >= 1) && (partId <= numel(partNames) + 1);
end
function partId = promptPart()
fprintf('== Select which part(s) to submit:\n');
partNames = validParts();
srcFiles = sources();
for i = 1:numel(partNames)
fprintf('== %d) %s [', i, partNames{i});
fprintf(' %s ', srcFiles{i}{:});
fprintf(']\n');
end
fprintf('== %d) All of the above \n==\nEnter your choice [1-%d]: ', ...
numel(partNames) + 1, numel(partNames) + 1);
selPart = input('', 's');
partId = str2num(selPart);
if ~isValidPartId(partId)
partId = -1;
end
end
function [email,ch,signature,auxstring] = getChallenge(email, part)
str = urlread(challenge_url(), 'post', {'email_address', email, 'assignment_part_sid', [homework_id() '-' num2str(part)], 'response_encoding', 'delim'});
str = strtrim(str);
r = struct;
while(numel(str) > 0)
[f, str] = strtok (str, '|');
[v, str] = strtok (str, '|');
r = setfield(r, f, v);
end
email = getfield(r, 'email_address');
ch = getfield(r, 'challenge_key');
signature = getfield(r, 'state');
auxstring = getfield(r, 'challenge_aux_data');
end
function [result, str] = submitSolutionWeb(email, part, output, source)
result = ['{"assignment_part_sid":"' base64encode([homework_id() '-' num2str(part)], '') '",' ...
'"email_address":"' base64encode(email, '') '",' ...
'"submission":"' base64encode(output, '') '",' ...
'"submission_aux":"' base64encode(source, '') '"' ...
'}'];
str = 'Web-submission';
end
function [result, str] = submitSolution(email, ch_resp, part, output, ...
source, signature)
params = {'assignment_part_sid', [homework_id() '-' num2str(part)], ...
'email_address', email, ...
'submission', base64encode(output, ''), ...
'submission_aux', base64encode(source, ''), ...
'challenge_response', ch_resp, ...
'state', signature};
str = urlread(submit_url(), 'post', params);
% Parse str to read for success / failure
result = 0;
end
% =========================== LOGIN HELPERS ===========================
function [login password] = loginPrompt()
% Prompt for password
[login password] = basicPrompt();
if isempty(login) || isempty(password)
login = []; password = [];
end
end
function [login password] = basicPrompt()
login = input('Login (Email address): ', 's');
password = input('Password: ', 's');
end
function [login password] = quickLogin(login,password)
disp(['You are currently logged in as ' login '.']);
cont_token = input('Is this you? (y/n - type n to reenter password)','s');
if(isempty(cont_token) || cont_token(1)=='Y'||cont_token(1)=='y')
return;
else
[login password] = loginPrompt();
end
end
function [str] = challengeResponse(email, passwd, challenge)
str = sha1([challenge passwd]);
end
% =============================== SHA-1 ================================
function hash = sha1(str)
% Initialize variables
h0 = uint32(1732584193);
h1 = uint32(4023233417);
h2 = uint32(2562383102);
h3 = uint32(271733878);
h4 = uint32(3285377520);
% Convert to word array
strlen = numel(str);
% Break string into chars and append the bit 1 to the message
mC = [double(str) 128];
mC = [mC zeros(1, 4-mod(numel(mC), 4), 'uint8')];
numB = strlen * 8;
if exist('idivide')
numC = idivide(uint32(numB + 65), 512, 'ceil');
else
numC = ceil(double(numB + 65)/512);
end
numW = numC * 16;
mW = zeros(numW, 1, 'uint32');
idx = 1;
for i = 1:4:strlen + 1
mW(idx) = bitor(bitor(bitor( ...
bitshift(uint32(mC(i)), 24), ...
bitshift(uint32(mC(i+1)), 16)), ...
bitshift(uint32(mC(i+2)), 8)), ...
uint32(mC(i+3)));
idx = idx + 1;
end
% Append length of message
mW(numW - 1) = uint32(bitshift(uint64(numB), -32));
mW(numW) = uint32(bitshift(bitshift(uint64(numB), 32), -32));
% Process the message in successive 512-bit chs
for cId = 1 : double(numC)
cSt = (cId - 1) * 16 + 1;
cEnd = cId * 16;
ch = mW(cSt : cEnd);
% Extend the sixteen 32-bit words into eighty 32-bit words
for j = 17 : 80
ch(j) = ch(j - 3);
ch(j) = bitxor(ch(j), ch(j - 8));
ch(j) = bitxor(ch(j), ch(j - 14));
ch(j) = bitxor(ch(j), ch(j - 16));
ch(j) = bitrotate(ch(j), 1);
end
% Initialize hash value for this ch
a = h0;
b = h1;
c = h2;
d = h3;
e = h4;
% Main loop
for i = 1 : 80
if(i >= 1 && i <= 20)
f = bitor(bitand(b, c), bitand(bitcmp(b), d));
k = uint32(1518500249);
elseif(i >= 21 && i <= 40)
f = bitxor(bitxor(b, c), d);
k = uint32(1859775393);
elseif(i >= 41 && i <= 60)
f = bitor(bitor(bitand(b, c), bitand(b, d)), bitand(c, d));
k = uint32(2400959708);
elseif(i >= 61 && i <= 80)
f = bitxor(bitxor(b, c), d);
k = uint32(3395469782);
end
t = bitrotate(a, 5);
t = bitadd(t, f);
t = bitadd(t, e);
t = bitadd(t, k);
t = bitadd(t, ch(i));
e = d;
d = c;
c = bitrotate(b, 30);
b = a;
a = t;
end
h0 = bitadd(h0, a);
h1 = bitadd(h1, b);
h2 = bitadd(h2, c);
h3 = bitadd(h3, d);
h4 = bitadd(h4, e);
end
hash = reshape(dec2hex(double([h0 h1 h2 h3 h4]), 8)', [1 40]);
hash = lower(hash);
end
function ret = bitadd(iA, iB)
ret = double(iA) + double(iB);
ret = bitset(ret, 33, 0);
ret = uint32(ret);
end
function ret = bitrotate(iA, places)
t = bitshift(iA, places - 32);
ret = bitshift(iA, places);
ret = bitor(ret, t);
end
% =========================== Base64 Encoder ============================
% Thanks to Peter John Acklam
%
function y = base64encode(x, eol)
%BASE64ENCODE Perform base64 encoding on a string.
%
% BASE64ENCODE(STR, EOL) encode the given string STR. EOL is the line ending
% sequence to use; it is optional and defaults to '\n' (ASCII decimal 10).
% The returned encoded string is broken into lines of no more than 76
% characters each, and each line will end with EOL unless it is empty. Let
% EOL be empty if you do not want the encoded string broken into lines.
%
% STR and EOL don't have to be strings (i.e., char arrays). The only
% requirement is that they are vectors containing values in the range 0-255.
%
% This function may be used to encode strings into the Base64 encoding
% specified in RFC 2045 - MIME (Multipurpose Internet Mail Extensions). The
% Base64 encoding is designed to represent arbitrary sequences of octets in a
% form that need not be humanly readable. A 65-character subset
% ([A-Za-z0-9+/=]) of US-ASCII is used, enabling 6 bits to be represented per
% printable character.
%
% Examples
% --------
%
% If you want to encode a large file, you should encode it in chunks that are
% a multiple of 57 bytes. This ensures that the base64 lines line up and
% that you do not end up with padding in the middle. 57 bytes of data fills
% one complete base64 line (76 == 57*4/3):
%
% If ifid and ofid are two file identifiers opened for reading and writing,
% respectively, then you can base64 encode the data with
%
% while ~feof(ifid)
% fwrite(ofid, base64encode(fread(ifid, 60*57)));
% end
%
% or, if you have enough memory,
%
% fwrite(ofid, base64encode(fread(ifid)));
%
% See also BASE64DECODE.
% Author: Peter John Acklam
% Time-stamp: 2004-02-03 21:36:56 +0100
% E-mail: pjacklam@online.no
% URL: http://home.online.no/~pjacklam
if isnumeric(x)
x = num2str(x);
end
% make sure we have the EOL value
if nargin < 2
eol = sprintf('\n');
else
if sum(size(eol) > 1) > 1
error('EOL must be a vector.');
end
if any(eol(:) > 255)
error('EOL can not contain values larger than 255.');
end
end
if sum(size(x) > 1) > 1
error('STR must be a vector.');
end
x = uint8(x);
eol = uint8(eol);
ndbytes = length(x); % number of decoded bytes
nchunks = ceil(ndbytes / 3); % number of chunks/groups
nebytes = 4 * nchunks; % number of encoded bytes
% add padding if necessary, to make the length of x a multiple of 3
if rem(ndbytes, 3)
x(end+1 : 3*nchunks) = 0;
end
x = reshape(x, [3, nchunks]); % reshape the data
y = repmat(uint8(0), 4, nchunks); % for the encoded data
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Split up every 3 bytes into 4 pieces
%
% aaaaaabb bbbbcccc ccdddddd
%
% to form
%
% 00aaaaaa 00bbbbbb 00cccccc 00dddddd
%
y(1,:) = bitshift(x(1,:), -2); % 6 highest bits of x(1,:)
y(2,:) = bitshift(bitand(x(1,:), 3), 4); % 2 lowest bits of x(1,:)
y(2,:) = bitor(y(2,:), bitshift(x(2,:), -4)); % 4 highest bits of x(2,:)
y(3,:) = bitshift(bitand(x(2,:), 15), 2); % 4 lowest bits of x(2,:)
y(3,:) = bitor(y(3,:), bitshift(x(3,:), -6)); % 2 highest bits of x(3,:)
y(4,:) = bitand(x(3,:), 63); % 6 lowest bits of x(3,:)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Now perform the following mapping
%
% 0 - 25 -> A-Z
% 26 - 51 -> a-z
% 52 - 61 -> 0-9
% 62 -> +
% 63 -> /
%
% We could use a mapping vector like
%
% ['A':'Z', 'a':'z', '0':'9', '+/']
%
% but that would require an index vector of class double.
%
z = repmat(uint8(0), size(y));
i = y <= 25; z(i) = 'A' + double(y(i));
i = 26 <= y & y <= 51; z(i) = 'a' - 26 + double(y(i));
i = 52 <= y & y <= 61; z(i) = '0' - 52 + double(y(i));
i = y == 62; z(i) = '+';
i = y == 63; z(i) = '/';
y = z;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Add padding if necessary.
%
npbytes = 3 * nchunks - ndbytes; % number of padding bytes
if npbytes
y(end-npbytes+1 : end) = '='; % '=' is used for padding
end
if isempty(eol)
% reshape to a row vector
y = reshape(y, [1, nebytes]);
else
nlines = ceil(nebytes / 76); % number of lines
neolbytes = length(eol); % number of bytes in eol string
% pad data so it becomes a multiple of 76 elements
y = [y(:) ; zeros(76 * nlines - numel(y), 1)];
y(nebytes + 1 : 76 * nlines) = 0;
y = reshape(y, 76, nlines);
% insert eol strings
eol = eol(:);
y(end + 1 : end + neolbytes, :) = eol(:, ones(1, nlines));
% remove padding, but keep the last eol string
m = nebytes + neolbytes * (nlines - 1);
n = (76+neolbytes)*nlines - neolbytes;
y(m+1 : n) = '';
% extract and reshape to row vector
y = reshape(y, 1, m+neolbytes);
end
% output is a character array
y = char(y);
end

View File

@@ -0,0 +1,20 @@
% submitWeb Creates files from your code and output for web submission.
%
% If the submit function does not work for you, use the web-submission mechanism.
% Call this function to produce a file for the part you wish to submit. Then,
% submit the file to the class servers using the "Web Submission" button on the
% Programming Exercises page on the course website.
%
% You should call this function without arguments (submitWeb), to receive
% an interactive prompt for submission; optionally you can call it with the partID
% if you so wish. Make sure your working directory is set to the directory
% containing the submitWeb.m file and your assignment files.
function submitWeb(partId)
if ~exist('partId', 'var') || isempty(partId)
partId = [];
end
submit(partId, 1);
end

View File

@@ -0,0 +1,21 @@
function A = warmUpExercise()
%WARMUPEXERCISE Example function in octave
% A = WARMUPEXERCISE() is an example function that returns the 5x5 identity matrix
A = [];
% ============= YOUR CODE HERE ==============
% Instructions: Return the 5x5 identity matrix
% In octave, we return values by defining which variables
% represent the return values (at the top of the file)
% and then set them accordingly.
A = eye(5);
% ===========================================
end

Binary file not shown.

View File

@@ -0,0 +1,30 @@
function [J, grad] = costFunction(theta, X, y)
%COSTFUNCTION Compute cost and gradient for logistic regression
% J = COSTFUNCTION(theta, X, y) computes the cost of using theta as the
% parameter for logistic regression and the gradient of the cost
% w.r.t. to the parameters.
% Initialize some useful values
m = length(y); % number of training examples
% You need to return the following variables correctly
J = 0;
grad = zeros(size(theta));
% ====================== YOUR CODE HERE ======================
% Instructions: Compute the cost of a particular choice of theta.
% You should set J to the cost.
% Compute the partial derivatives and set grad to the partial
% derivatives of the cost w.r.t. each parameter in theta
%
% Note: grad should have the same dimensions as theta
%
h = sigmoid( X*theta );
o = ones(size(y));
J = sum( y .* log(h) + (o-y) .* log(o-h) ) / (-m);
grad = (X'*(h - y)) / m;
% =============================================================
end

View File

@@ -0,0 +1,30 @@
function [J, grad] = costFunctionReg(theta, X, y, lambda)
%COSTFUNCTIONREG Compute cost and gradient for logistic regression with regularization
% J = COSTFUNCTIONREG(theta, X, y, lambda) computes the cost of using
% theta as the parameter for regularized logistic regression and the
% gradient of the cost w.r.t. to the parameters.
% Initialize some useful values
m = length(y); % number of training examples
% You need to return the following variables correctly
J = 0;
grad = zeros(size(theta));
% ====================== YOUR CODE HERE ======================
% Instructions: Compute the cost of a particular choice of theta.
% You should set J to the cost.
% Compute the partial derivatives and set grad to the partial
% derivatives of the cost w.r.t. each parameter in theta
h = sigmoid( X*theta );
o = ones(size(y));
reg = theta;
reg(1) = 0;
J = sum( y .* log(h) + (o-y) .* log(o-h) ) / (-m) + (lambda/(2*m))*sum(reg.^2);
grad = (X'*(h - y)) / m + (lambda/m) * reg;
% =============================================================
end

View File

@@ -0,0 +1,135 @@
%% Machine Learning Online Class - Exercise 2: Logistic Regression
%
% Instructions
% ------------
%
% This file contains code that helps you get started on the logistic
% regression exercise. You will need to complete the following functions
% in this exericse:
%
% sigmoid.m
% costFunction.m
% predict.m
% costFunctionReg.m
%
% For this exercise, you will not need to change any code in this file,
% or any other files other than those mentioned above.
%
%% Initialization
clear ; close all; clc
%% Load Data
% The first two columns contains the exam scores and the third column
% contains the label.
data = load('ex2data1.txt');
X = data(:, [1, 2]); y = data(:, 3);
%% ==================== Part 1: Plotting ====================
% We start the exercise by first plotting the data to understand the
% the problem we are working with.
fprintf(['Plotting data with + indicating (y = 1) examples and o ' ...
'indicating (y = 0) examples.\n']);
%%plotData(X, y);
% Put some labels
%%hold on;
% Labels and Legend
%%xlabel('Exam 1 score')
%%ylabel('Exam 2 score')
% Specified in plot order
%%legend('Admitted', 'Not admitted')
%%hold off;
fprintf('\nProgram paused. Press enter to continue.\n');
%%pause;
%% ============ Part 2: Compute Cost and Gradient ============
% In this part of the exercise, you will implement the cost and gradient
% for logistic regression. You neeed to complete the code in
% costFunction.m
% Setup the data matrix appropriately, and add ones for the intercept term
[m, n] = size(X);
% Add intercept term to x and X_test
X = [ones(m, 1) X];
% Initialize fitting parameters
initial_theta = zeros(n + 1, 1);
% Compute and display initial cost and gradient
[cost, grad] = costFunction(initial_theta, X, y);
fprintf('Cost at initial theta (zeros): %f\n', cost);
fprintf('Gradient at initial theta (zeros): \n');
fprintf(' %f \n', grad);
fprintf('\nProgram paused. Press enter to continue.\n');
pause;
%% ============= Part 3: Optimizing using fminunc =============
% In this exercise, you will use a built-in function (fminunc) to find the
% optimal parameters theta.
% Set options for fminunc
options = optimset('GradObj', 'on', 'MaxIter', 400);
% Run fminunc to obtain the optimal theta
% This function will return theta and the cost
[theta, cost] = ...
fminunc(@(t)(costFunction(t, X, y)), initial_theta, options);
% Print theta to screen
fprintf('Cost at theta found by fminunc: %f\n', cost);
fprintf('theta: \n');
fprintf(' %f \n', theta);
% Plot Boundary
plotDecisionBoundary(theta, X, y);
% Put some labels
hold on;
% Labels and Legend
xlabel('Exam 1 score')
ylabel('Exam 2 score')
% Specified in plot order
legend('Admitted', 'Not admitted')
hold off;
fprintf('\nProgram paused. Press enter to continue.\n');
pause;
%% ============== Part 4: Predict and Accuracies ==============
% After learning the parameters, you'll like to use it to predict the outcomes
% on unseen data. In this part, you will use the logistic regression model
% to predict the probability that a student with score 45 on exam 1 and
% score 85 on exam 2 will be admitted.
%
% Furthermore, you will compute the training and test set accuracies of
% our model.
%
% Your task is to complete the code in predict.m
% Predict probability for a student with score 45 on exam 1
% and score 85 on exam 2
prob = sigmoid([1 45 85] * theta);
fprintf(['For a student with scores 45 and 85, we predict an admission ' ...
'probability of %f\n\n'], prob);
% Compute accuracy on our training set
p = predict(theta, X);
fprintf('Train Accuracy: %f\n', mean(double(p == y)) * 100);
fprintf('\nProgram paused. Press enter to continue.\n');
pause;

View File

@@ -0,0 +1,116 @@
%% Machine Learning Online Class - Exercise 2: Logistic Regression
%
% Instructions
% ------------
%
% This file contains code that helps you get started on the second part
% of the exercise which covers regularization with logistic regression.
%
% You will need to complete the following functions in this exericse:
%
% sigmoid.m
% costFunction.m
% predict.m
% costFunctionReg.m
%
% For this exercise, you will not need to change any code in this file,
% or any other files other than those mentioned above.
%
%% Initialization
clear ; close all; clc
%% Load Data
% The first two columns contains the X values and the third column
% contains the label (y).
data = load('ex2data2.txt');
X = data(:, [1, 2]); y = data(:, 3);
plotData(X, y);
% Put some labels
hold on;
% Labels and Legend
xlabel('Microchip Test 1')
ylabel('Microchip Test 2')
% Specified in plot order
legend('y = 1', 'y = 0')
hold off;
%% =========== Part 1: Regularized Logistic Regression ============
% In this part, you are given a dataset with data points that are not
% linearly separable. However, you would still like to use logistic
% regression to classify the data points.
%
% To do so, you introduce more features to use -- in particular, you add
% polynomial features to our data matrix (similar to polynomial
% regression).
%
% Add Polynomial Features
% Note that mapFeature also adds a column of ones for us, so the intercept
% term is handled
X = mapFeature(X(:,1), X(:,2));
% Initialize fitting parameters
initial_theta = zeros(size(X, 2), 1);
% Set regularization parameter lambda to 1
lambda = 1;
% Compute and display initial cost and gradient for regularized logistic
% regression
[cost, grad] = costFunctionReg(initial_theta, X, y, lambda);
fprintf('Cost at initial theta (zeros): %f\n', cost);
fprintf('\nProgram paused. Press enter to continue.\n');
pause;
%% ============= Part 2: Regularization and Accuracies =============
% Optional Exercise:
% In this part, you will get to try different values of lambda and
% see how regularization affects the decision coundart
%
% Try the following values of lambda (0, 1, 10, 100).
%
% How does the decision boundary change when you vary lambda? How does
% the training set accuracy vary?
%
% Initialize fitting parameters
initial_theta = zeros(size(X, 2), 1);
% Set regularization parameter lambda to 1 (you should vary this)
lambda = 1;
% Set Options
options = optimset('GradObj', 'on', 'MaxIter', 400);
% Optimize
[theta, J, exit_flag] = ...
fminunc(@(t)(costFunctionReg(t, X, y, lambda)), initial_theta, options);
% Plot Boundary
plotDecisionBoundary(theta, X, y);
hold on;
title(sprintf('lambda = %g', lambda))
% Labels and Legend
xlabel('Microchip Test 1')
ylabel('Microchip Test 2')
legend('y = 1', 'y = 0', 'Decision boundary')
hold off;
% Compute accuracy on our training set
p = predict(theta, X);
fprintf('Train Accuracy: %f\n', mean(double(p == y)) * 100);

View File

@@ -0,0 +1,100 @@
34.62365962451697,78.0246928153624,0
30.28671076822607,43.89499752400101,0
35.84740876993872,72.90219802708364,0
60.18259938620976,86.30855209546826,1
79.0327360507101,75.3443764369103,1
45.08327747668339,56.3163717815305,0
61.10666453684766,96.51142588489624,1
75.02474556738889,46.55401354116538,1
76.09878670226257,87.42056971926803,1
84.43281996120035,43.53339331072109,1
95.86155507093572,38.22527805795094,0
75.01365838958247,30.60326323428011,0
82.30705337399482,76.48196330235604,1
69.36458875970939,97.71869196188608,1
39.53833914367223,76.03681085115882,0
53.9710521485623,89.20735013750205,1
69.07014406283025,52.74046973016765,1
67.94685547711617,46.67857410673128,0
70.66150955499435,92.92713789364831,1
76.97878372747498,47.57596364975532,1
67.37202754570876,42.83843832029179,0
89.67677575072079,65.79936592745237,1
50.534788289883,48.85581152764205,0
34.21206097786789,44.20952859866288,0
77.9240914545704,68.9723599933059,1
62.27101367004632,69.95445795447587,1
80.1901807509566,44.82162893218353,1
93.114388797442,38.80067033713209,0
61.83020602312595,50.25610789244621,0
38.78580379679423,64.99568095539578,0
61.379289447425,72.80788731317097,1
85.40451939411645,57.05198397627122,1
52.10797973193984,63.12762376881715,0
52.04540476831827,69.43286012045222,1
40.23689373545111,71.16774802184875,0
54.63510555424817,52.21388588061123,0
33.91550010906887,98.86943574220611,0
64.17698887494485,80.90806058670817,1
74.78925295941542,41.57341522824434,0
34.1836400264419,75.2377203360134,0
83.90239366249155,56.30804621605327,1
51.54772026906181,46.85629026349976,0
94.44336776917852,65.56892160559052,1
82.36875375713919,40.61825515970618,0
51.04775177128865,45.82270145776001,0
62.22267576120188,52.06099194836679,0
77.19303492601364,70.45820000180959,1
97.77159928000232,86.7278223300282,1
62.07306379667647,96.76882412413983,1
91.56497449807442,88.69629254546599,1
79.94481794066932,74.16311935043758,1
99.2725269292572,60.99903099844988,1
90.54671411399852,43.39060180650027,1
34.52451385320009,60.39634245837173,0
50.2864961189907,49.80453881323059,0
49.58667721632031,59.80895099453265,0
97.64563396007767,68.86157272420604,1
32.57720016809309,95.59854761387875,0
74.24869136721598,69.82457122657193,1
71.79646205863379,78.45356224515052,1
75.3956114656803,85.75993667331619,1
35.28611281526193,47.02051394723416,0
56.25381749711624,39.26147251058019,0
30.05882244669796,49.59297386723685,0
44.66826172480893,66.45008614558913,0
66.56089447242954,41.09209807936973,0
40.45755098375164,97.53518548909936,1
49.07256321908844,51.88321182073966,0
80.27957401466998,92.11606081344084,1
66.74671856944039,60.99139402740988,1
32.72283304060323,43.30717306430063,0
64.0393204150601,78.03168802018232,1
72.34649422579923,96.22759296761404,1
60.45788573918959,73.09499809758037,1
58.84095621726802,75.85844831279042,1
99.82785779692128,72.36925193383885,1
47.26426910848174,88.47586499559782,1
50.45815980285988,75.80985952982456,1
60.45555629271532,42.50840943572217,0
82.22666157785568,42.71987853716458,0
88.9138964166533,69.80378889835472,1
94.83450672430196,45.69430680250754,1
67.31925746917527,66.58935317747915,1
57.23870631569862,59.51428198012956,1
80.36675600171273,90.96014789746954,1
68.46852178591112,85.59430710452014,1
42.0754545384731,78.84478600148043,0
75.47770200533905,90.42453899753964,1
78.63542434898018,96.64742716885644,1
52.34800398794107,60.76950525602592,0
94.09433112516793,77.15910509073893,1
90.44855097096364,87.50879176484702,1
55.48216114069585,35.57070347228866,0
74.49269241843041,84.84513684930135,1
89.84580670720979,45.35828361091658,1
83.48916274498238,48.38028579728175,1
42.2617008099817,87.10385094025457,1
99.31500880510394,68.77540947206617,1
55.34001756003703,64.9319380069486,1
74.77589300092767,89.52981289513276,1

View File

@@ -0,0 +1,118 @@
0.051267,0.69956,1
-0.092742,0.68494,1
-0.21371,0.69225,1
-0.375,0.50219,1
-0.51325,0.46564,1
-0.52477,0.2098,1
-0.39804,0.034357,1
-0.30588,-0.19225,1
0.016705,-0.40424,1
0.13191,-0.51389,1
0.38537,-0.56506,1
0.52938,-0.5212,1
0.63882,-0.24342,1
0.73675,-0.18494,1
0.54666,0.48757,1
0.322,0.5826,1
0.16647,0.53874,1
-0.046659,0.81652,1
-0.17339,0.69956,1
-0.47869,0.63377,1
-0.60541,0.59722,1
-0.62846,0.33406,1
-0.59389,0.005117,1
-0.42108,-0.27266,1
-0.11578,-0.39693,1
0.20104,-0.60161,1
0.46601,-0.53582,1
0.67339,-0.53582,1
-0.13882,0.54605,1
-0.29435,0.77997,1
-0.26555,0.96272,1
-0.16187,0.8019,1
-0.17339,0.64839,1
-0.28283,0.47295,1
-0.36348,0.31213,1
-0.30012,0.027047,1
-0.23675,-0.21418,1
-0.06394,-0.18494,1
0.062788,-0.16301,1
0.22984,-0.41155,1
0.2932,-0.2288,1
0.48329,-0.18494,1
0.64459,-0.14108,1
0.46025,0.012427,1
0.6273,0.15863,1
0.57546,0.26827,1
0.72523,0.44371,1
0.22408,0.52412,1
0.44297,0.67032,1
0.322,0.69225,1
0.13767,0.57529,1
-0.0063364,0.39985,1
-0.092742,0.55336,1
-0.20795,0.35599,1
-0.20795,0.17325,1
-0.43836,0.21711,1
-0.21947,-0.016813,1
-0.13882,-0.27266,1
0.18376,0.93348,0
0.22408,0.77997,0
0.29896,0.61915,0
0.50634,0.75804,0
0.61578,0.7288,0
0.60426,0.59722,0
0.76555,0.50219,0
0.92684,0.3633,0
0.82316,0.27558,0
0.96141,0.085526,0
0.93836,0.012427,0
0.86348,-0.082602,0
0.89804,-0.20687,0
0.85196,-0.36769,0
0.82892,-0.5212,0
0.79435,-0.55775,0
0.59274,-0.7405,0
0.51786,-0.5943,0
0.46601,-0.41886,0
0.35081,-0.57968,0
0.28744,-0.76974,0
0.085829,-0.75512,0
0.14919,-0.57968,0
-0.13306,-0.4481,0
-0.40956,-0.41155,0
-0.39228,-0.25804,0
-0.74366,-0.25804,0
-0.69758,0.041667,0
-0.75518,0.2902,0
-0.69758,0.68494,0
-0.4038,0.70687,0
-0.38076,0.91886,0
-0.50749,0.90424,0
-0.54781,0.70687,0
0.10311,0.77997,0
0.057028,0.91886,0
-0.10426,0.99196,0
-0.081221,1.1089,0
0.28744,1.087,0
0.39689,0.82383,0
0.63882,0.88962,0
0.82316,0.66301,0
0.67339,0.64108,0
1.0709,0.10015,0
-0.046659,-0.57968,0
-0.23675,-0.63816,0
-0.15035,-0.36769,0
-0.49021,-0.3019,0
-0.46717,-0.13377,0
-0.28859,-0.060673,0
-0.61118,-0.067982,0
-0.66302,-0.21418,0
-0.59965,-0.41886,0
-0.72638,-0.082602,0
-0.83007,0.31213,0
-0.72062,0.53874,0
-0.59389,0.49488,0
-0.48445,0.99927,0
-0.0063364,0.99927,0
0.63265,-0.030612,0

View File

@@ -0,0 +1,28 @@
function [theta,hist] = findmin(CF, X, y, theta, alpha, num_iters)
%GRADIENTDESCENTMULTI Performs gradient descent to learn theta
% theta = GRADIENTDESCENTMULTI(x, y, theta, alpha, num_iters) updates theta by
% taking num_iters gradient steps with learning rate alpha
hist = zeros(num_iters+1, length(theta));
hist(1,:) = theta';
for iter = 1:num_iters
% ====================== YOUR CODE HERE ======================
% Instructions: Perform a single gradient step on the parameter vector
% theta.
%
% Hint: While debugging, it can be useful to print out the values
% of the cost function (computeCostMulti) and gradient here.
%
[J,g] = CF( theta, X, y );
theta = theta - alpha * g;
hist(iter+1,:) = theta';
end
end

View File

@@ -0,0 +1,21 @@
function out = mapFeature(X1, X2)
% MAPFEATURE Feature mapping function to polynomial features
%
% MAPFEATURE(X1, X2) maps the two input features
% to quadratic features used in the regularization exercise.
%
% Returns a new feature array with more features, comprising of
% X1, X2, X1.^2, X2.^2, X1*X2, X1*X2.^2, etc..
%
% Inputs X1, X2 must be the same size
%
degree = 6;
out = ones(size(X1(:,1)));
for i = 1:degree
for j = 0:i
out(:, end+1) = (X1.^(i-j)).*(X2.^j);
end
end
end

View File

@@ -0,0 +1,29 @@
function plotData(X, y)
%PLOTDATA Plots the data points X and y into a new figure
% PLOTDATA(x,y) plots the data points with + for the positive examples
% and o for the negative examples. X is assumed to be a Mx2 matrix.
% Create New Figure
figure; hold on;
% ====================== YOUR CODE HERE ======================
% Instructions: Plot the positive and negative examples on a
% 2D plot, using the option 'k+' for the positive
% examples and 'ko' for the negative examples.
%
% =========================================================================
hold off;
end

View File

@@ -0,0 +1,48 @@
function plotDecisionBoundary(theta, X, y)
%PLOTDECISIONBOUNDARY Plots the data points X and y into a new figure with
%the decision boundary defined by theta
% PLOTDECISIONBOUNDARY(theta, X,y) plots the data points with + for the
% positive examples and o for the negative examples. X is assumed to be
% a either
% 1) Mx3 matrix, where the first column is an all-ones column for the
% intercept.
% 2) MxN, N>3 matrix, where the first column is all-ones
% Plot Data
plotData(X(:,2:3), y);
hold on
if size(X, 2) <= 3
% Only need 2 points to define a line, so choose two endpoints
plot_x = [min(X(:,2))-2, max(X(:,2))+2];
% Calculate the decision boundary line
plot_y = (-1./theta(3)).*(theta(2).*plot_x + theta(1));
% Plot, and adjust axes for better viewing
plot(plot_x, plot_y)
% Legend, specific for the exercise
legend('Admitted', 'Not admitted', 'Decision Boundary')
axis([30, 100, 30, 100])
else
% Here is the grid range
u = linspace(-1, 1.5, 50);
v = linspace(-1, 1.5, 50);
z = zeros(length(u), length(v));
% Evaluate z = theta*x over the grid
for i = 1:length(u)
for j = 1:length(v)
z(i,j) = mapFeature(u(i), v(j))*theta;
end
end
z = z'; % important to transpose z before calling contour
% Plot z = 0
% Notice you need to specify the range [0, 0]
contour(u, v, z, [0, 0], 'LineWidth', 2)
end
hold off
end

View File

@@ -0,0 +1,27 @@
function p = predict(theta, X)
%PREDICT Predict whether the label is 0 or 1 using learned logistic
%regression parameters theta
% p = PREDICT(theta, X) computes the predictions for X using a
% threshold at 0.5 (i.e., if sigmoid(theta'*x) >= 0.5, predict 1)
m = size(X, 1); % Number of training examples
% You need to return the following variables correctly
p = zeros(m, 1);
% ====================== YOUR CODE HERE ======================
% Instructions: Complete the following code to make predictions using
% your learned logistic regression parameters.
% You should set p to a vector of 0's and 1's
%
h = sigmoid( X*theta );
p = round(h);
% =========================================================================
end

View File

@@ -0,0 +1,19 @@
function g = sigmoid(z)
%SIGMOID Compute sigmoid functoon
% J = SIGMOID(z) computes the sigmoid of z.
% You need to return the following variables correctly
g = zeros(size(z));
% ====================== YOUR CODE HERE ======================
% Instructions: Compute the sigmoid of each value of z (z can be a matrix,
% vector or scalar).
g = ones(size(z)) ./ (ones(size(z)) + exp(-1*z));
% =============================================================
end

View File

@@ -0,0 +1,574 @@
function submit(partId, webSubmit)
%SUBMIT Submit your code and output to the ml-class servers
% SUBMIT() will connect to the ml-class server and submit your solution
fprintf('==\n== [ml-class] Submitting Solutions | Programming Exercise %s\n==\n', ...
homework_id());
if ~exist('partId', 'var') || isempty(partId)
partId = promptPart();
end
if ~exist('webSubmit', 'var') || isempty(webSubmit)
webSubmit = 0; % submit directly by default
end
% Check valid partId
partNames = validParts();
if ~isValidPartId(partId)
fprintf('!! Invalid homework part selected.\n');
fprintf('!! Expected an integer from 1 to %d.\n', numel(partNames) + 1);
fprintf('!! Submission Cancelled\n');
return
end
if ~exist('ml_login_data.mat','file')
[login password] = loginPrompt();
save('ml_login_data.mat','login','password');
else
load('ml_login_data.mat');
[login password] = quickLogin(login, password);
save('ml_login_data.mat','login','password');
end
if isempty(login)
fprintf('!! Submission Cancelled\n');
return
end
fprintf('\n== Connecting to ml-class ... ');
if exist('OCTAVE_VERSION')
fflush(stdout);
end
% Setup submit list
if partId == numel(partNames) + 1
submitParts = 1:numel(partNames);
else
submitParts = [partId];
end
for s = 1:numel(submitParts)
thisPartId = submitParts(s);
if (~webSubmit) % submit directly to server
[login, ch, signature, auxstring] = getChallenge(login, thisPartId);
if isempty(login) || isempty(ch) || isempty(signature)
% Some error occured, error string in first return element.
fprintf('\n!! Error: %s\n\n', login);
return
end
% Attempt Submission with Challenge
ch_resp = challengeResponse(login, password, ch);
[result, str] = submitSolution(login, ch_resp, thisPartId, ...
output(thisPartId, auxstring), source(thisPartId), signature);
partName = partNames{thisPartId};
fprintf('\n== [ml-class] Submitted Assignment %s - Part %d - %s\n', ...
homework_id(), thisPartId, partName);
fprintf('== %s\n', strtrim(str));
if exist('OCTAVE_VERSION')
fflush(stdout);
end
else
[result] = submitSolutionWeb(login, thisPartId, output(thisPartId), ...
source(thisPartId));
result = base64encode(result);
fprintf('\nSave as submission file [submit_ex%s_part%d.txt (enter to accept default)]:', ...
homework_id(), thisPartId);
saveAsFile = input('', 's');
if (isempty(saveAsFile))
saveAsFile = sprintf('submit_ex%s_part%d.txt', homework_id(), thisPartId);
end
fid = fopen(saveAsFile, 'w');
if (fid)
fwrite(fid, result);
fclose(fid);
fprintf('\nSaved your solutions to %s.\n\n', saveAsFile);
fprintf(['You can now submit your solutions through the web \n' ...
'form in the programming exercises. Select the corresponding \n' ...
'programming exercise to access the form.\n']);
else
fprintf('Unable to save to %s\n\n', saveAsFile);
fprintf(['You can create a submission file by saving the \n' ...
'following text in a file: (press enter to continue)\n\n']);
pause;
fprintf(result);
end
end
end
end
% ================== CONFIGURABLES FOR EACH HOMEWORK ==================
function id = homework_id()
id = '2';
end
function [partNames] = validParts()
partNames = { 'Sigmoid Function ', ...
'Logistic Regression Cost', ...
'Logistic Regression Gradient', ...
'Predict', ...
'Regularized Logistic Regression Cost' ...
'Regularized Logistic Regression Gradient' ...
};
end
function srcs = sources()
% Separated by part
srcs = { { 'sigmoid.m' }, ...
{ 'costFunction.m' }, ...
{ 'costFunction.m' }, ...
{ 'predict.m' }, ...
{ 'costFunctionReg.m' }, ...
{ 'costFunctionReg.m' } };
end
function out = output(partId, auxstring)
% Random Test Cases
X = [ones(20,1) (exp(1) * sin(1:1:20))' (exp(0.5) * cos(1:1:20))'];
y = sin(X(:,1) + X(:,2)) > 0;
if partId == 1
out = sprintf('%0.5f ', sigmoid(X));
elseif partId == 2
out = sprintf('%0.5f ', costFunction([0.25 0.5 -0.5]', X, y));
elseif partId == 3
[cost, grad] = costFunction([0.25 0.5 -0.5]', X, y);
out = sprintf('%0.5f ', grad);
elseif partId == 4
out = sprintf('%0.5f ', predict([0.25 0.5 -0.5]', X));
elseif partId == 5
out = sprintf('%0.5f ', costFunctionReg([0.25 0.5 -0.5]', X, y, 0.1));
elseif partId == 6
[cost, grad] = costFunctionReg([0.25 0.5 -0.5]', X, y, 0.1);
out = sprintf('%0.5f ', grad);
end
end
% ====================== SERVER CONFIGURATION ===========================
% ***************** REMOVE -staging WHEN YOU DEPLOY *********************
function url = site_url()
url = 'http://class.coursera.org/ml-008';
end
function url = challenge_url()
url = [site_url() '/assignment/challenge'];
end
function url = submit_url()
url = [site_url() '/assignment/submit'];
end
% ========================= CHALLENGE HELPERS =========================
function src = source(partId)
src = '';
src_files = sources();
if partId <= numel(src_files)
flist = src_files{partId};
for i = 1:numel(flist)
fid = fopen(flist{i});
if (fid == -1)
error('Error opening %s (is it missing?)', flist{i});
end
line = fgets(fid);
while ischar(line)
src = [src line];
line = fgets(fid);
end
fclose(fid);
src = [src '||||||||'];
end
end
end
function ret = isValidPartId(partId)
partNames = validParts();
ret = (~isempty(partId)) && (partId >= 1) && (partId <= numel(partNames) + 1);
end
function partId = promptPart()
fprintf('== Select which part(s) to submit:\n');
partNames = validParts();
srcFiles = sources();
for i = 1:numel(partNames)
fprintf('== %d) %s [', i, partNames{i});
fprintf(' %s ', srcFiles{i}{:});
fprintf(']\n');
end
fprintf('== %d) All of the above \n==\nEnter your choice [1-%d]: ', ...
numel(partNames) + 1, numel(partNames) + 1);
selPart = input('', 's');
partId = str2num(selPart);
if ~isValidPartId(partId)
partId = -1;
end
end
function [email,ch,signature,auxstring] = getChallenge(email, part)
str = urlread(challenge_url(), 'post', {'email_address', email, 'assignment_part_sid', [homework_id() '-' num2str(part)], 'response_encoding', 'delim'});
str = strtrim(str);
r = struct;
while(numel(str) > 0)
[f, str] = strtok (str, '|');
[v, str] = strtok (str, '|');
r = setfield(r, f, v);
end
email = getfield(r, 'email_address');
ch = getfield(r, 'challenge_key');
signature = getfield(r, 'state');
auxstring = getfield(r, 'challenge_aux_data');
end
function [result, str] = submitSolutionWeb(email, part, output, source)
result = ['{"assignment_part_sid":"' base64encode([homework_id() '-' num2str(part)], '') '",' ...
'"email_address":"' base64encode(email, '') '",' ...
'"submission":"' base64encode(output, '') '",' ...
'"submission_aux":"' base64encode(source, '') '"' ...
'}'];
str = 'Web-submission';
end
function [result, str] = submitSolution(email, ch_resp, part, output, ...
source, signature)
params = {'assignment_part_sid', [homework_id() '-' num2str(part)], ...
'email_address', email, ...
'submission', base64encode(output, ''), ...
'submission_aux', base64encode(source, ''), ...
'challenge_response', ch_resp, ...
'state', signature};
str = urlread(submit_url(), 'post', params);
% Parse str to read for success / failure
result = 0;
end
% =========================== LOGIN HELPERS ===========================
function [login password] = loginPrompt()
% Prompt for password
[login password] = basicPrompt();
if isempty(login) || isempty(password)
login = []; password = [];
end
end
function [login password] = basicPrompt()
login = input('Login (Email address): ', 's');
password = input('Password: ', 's');
end
function [login password] = quickLogin(login,password)
disp(['You are currently logged in as ' login '.']);
cont_token = input('Is this you? (y/n - type n to reenter password)','s');
if(isempty(cont_token) || cont_token(1)=='Y'||cont_token(1)=='y')
return;
else
[login password] = loginPrompt();
end
end
function [str] = challengeResponse(email, passwd, challenge)
str = sha1([challenge passwd]);
end
% =============================== SHA-1 ================================
function hash = sha1(str)
% Initialize variables
h0 = uint32(1732584193);
h1 = uint32(4023233417);
h2 = uint32(2562383102);
h3 = uint32(271733878);
h4 = uint32(3285377520);
% Convert to word array
strlen = numel(str);
% Break string into chars and append the bit 1 to the message
mC = [double(str) 128];
mC = [mC zeros(1, 4-mod(numel(mC), 4), 'uint8')];
numB = strlen * 8;
if exist('idivide')
numC = idivide(uint32(numB + 65), 512, 'ceil');
else
numC = ceil(double(numB + 65)/512);
end
numW = numC * 16;
mW = zeros(numW, 1, 'uint32');
idx = 1;
for i = 1:4:strlen + 1
mW(idx) = bitor(bitor(bitor( ...
bitshift(uint32(mC(i)), 24), ...
bitshift(uint32(mC(i+1)), 16)), ...
bitshift(uint32(mC(i+2)), 8)), ...
uint32(mC(i+3)));
idx = idx + 1;
end
% Append length of message
mW(numW - 1) = uint32(bitshift(uint64(numB), -32));
mW(numW) = uint32(bitshift(bitshift(uint64(numB), 32), -32));
% Process the message in successive 512-bit chs
for cId = 1 : double(numC)
cSt = (cId - 1) * 16 + 1;
cEnd = cId * 16;
ch = mW(cSt : cEnd);
% Extend the sixteen 32-bit words into eighty 32-bit words
for j = 17 : 80
ch(j) = ch(j - 3);
ch(j) = bitxor(ch(j), ch(j - 8));
ch(j) = bitxor(ch(j), ch(j - 14));
ch(j) = bitxor(ch(j), ch(j - 16));
ch(j) = bitrotate(ch(j), 1);
end
% Initialize hash value for this ch
a = h0;
b = h1;
c = h2;
d = h3;
e = h4;
% Main loop
for i = 1 : 80
if(i >= 1 && i <= 20)
f = bitor(bitand(b, c), bitand(bitcmp(b), d));
k = uint32(1518500249);
elseif(i >= 21 && i <= 40)
f = bitxor(bitxor(b, c), d);
k = uint32(1859775393);
elseif(i >= 41 && i <= 60)
f = bitor(bitor(bitand(b, c), bitand(b, d)), bitand(c, d));
k = uint32(2400959708);
elseif(i >= 61 && i <= 80)
f = bitxor(bitxor(b, c), d);
k = uint32(3395469782);
end
t = bitrotate(a, 5);
t = bitadd(t, f);
t = bitadd(t, e);
t = bitadd(t, k);
t = bitadd(t, ch(i));
e = d;
d = c;
c = bitrotate(b, 30);
b = a;
a = t;
end
h0 = bitadd(h0, a);
h1 = bitadd(h1, b);
h2 = bitadd(h2, c);
h3 = bitadd(h3, d);
h4 = bitadd(h4, e);
end
hash = reshape(dec2hex(double([h0 h1 h2 h3 h4]), 8)', [1 40]);
hash = lower(hash);
end
function ret = bitadd(iA, iB)
ret = double(iA) + double(iB);
ret = bitset(ret, 33, 0);
ret = uint32(ret);
end
function ret = bitrotate(iA, places)
t = bitshift(iA, places - 32);
ret = bitshift(iA, places);
ret = bitor(ret, t);
end
% =========================== Base64 Encoder ============================
% Thanks to Peter John Acklam
%
function y = base64encode(x, eol)
%BASE64ENCODE Perform base64 encoding on a string.
%
% BASE64ENCODE(STR, EOL) encode the given string STR. EOL is the line ending
% sequence to use; it is optional and defaults to '\n' (ASCII decimal 10).
% The returned encoded string is broken into lines of no more than 76
% characters each, and each line will end with EOL unless it is empty. Let
% EOL be empty if you do not want the encoded string broken into lines.
%
% STR and EOL don't have to be strings (i.e., char arrays). The only
% requirement is that they are vectors containing values in the range 0-255.
%
% This function may be used to encode strings into the Base64 encoding
% specified in RFC 2045 - MIME (Multipurpose Internet Mail Extensions). The
% Base64 encoding is designed to represent arbitrary sequences of octets in a
% form that need not be humanly readable. A 65-character subset
% ([A-Za-z0-9+/=]) of US-ASCII is used, enabling 6 bits to be represented per
% printable character.
%
% Examples
% --------
%
% If you want to encode a large file, you should encode it in chunks that are
% a multiple of 57 bytes. This ensures that the base64 lines line up and
% that you do not end up with padding in the middle. 57 bytes of data fills
% one complete base64 line (76 == 57*4/3):
%
% If ifid and ofid are two file identifiers opened for reading and writing,
% respectively, then you can base64 encode the data with
%
% while ~feof(ifid)
% fwrite(ofid, base64encode(fread(ifid, 60*57)));
% end
%
% or, if you have enough memory,
%
% fwrite(ofid, base64encode(fread(ifid)));
%
% See also BASE64DECODE.
% Author: Peter John Acklam
% Time-stamp: 2004-02-03 21:36:56 +0100
% E-mail: pjacklam@online.no
% URL: http://home.online.no/~pjacklam
if isnumeric(x)
x = num2str(x);
end
% make sure we have the EOL value
if nargin < 2
eol = sprintf('\n');
else
if sum(size(eol) > 1) > 1
error('EOL must be a vector.');
end
if any(eol(:) > 255)
error('EOL can not contain values larger than 255.');
end
end
if sum(size(x) > 1) > 1
error('STR must be a vector.');
end
x = uint8(x);
eol = uint8(eol);
ndbytes = length(x); % number of decoded bytes
nchunks = ceil(ndbytes / 3); % number of chunks/groups
nebytes = 4 * nchunks; % number of encoded bytes
% add padding if necessary, to make the length of x a multiple of 3
if rem(ndbytes, 3)
x(end+1 : 3*nchunks) = 0;
end
x = reshape(x, [3, nchunks]); % reshape the data
y = repmat(uint8(0), 4, nchunks); % for the encoded data
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Split up every 3 bytes into 4 pieces
%
% aaaaaabb bbbbcccc ccdddddd
%
% to form
%
% 00aaaaaa 00bbbbbb 00cccccc 00dddddd
%
y(1,:) = bitshift(x(1,:), -2); % 6 highest bits of x(1,:)
y(2,:) = bitshift(bitand(x(1,:), 3), 4); % 2 lowest bits of x(1,:)
y(2,:) = bitor(y(2,:), bitshift(x(2,:), -4)); % 4 highest bits of x(2,:)
y(3,:) = bitshift(bitand(x(2,:), 15), 2); % 4 lowest bits of x(2,:)
y(3,:) = bitor(y(3,:), bitshift(x(3,:), -6)); % 2 highest bits of x(3,:)
y(4,:) = bitand(x(3,:), 63); % 6 lowest bits of x(3,:)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Now perform the following mapping
%
% 0 - 25 -> A-Z
% 26 - 51 -> a-z
% 52 - 61 -> 0-9
% 62 -> +
% 63 -> /
%
% We could use a mapping vector like
%
% ['A':'Z', 'a':'z', '0':'9', '+/']
%
% but that would require an index vector of class double.
%
z = repmat(uint8(0), size(y));
i = y <= 25; z(i) = 'A' + double(y(i));
i = 26 <= y & y <= 51; z(i) = 'a' - 26 + double(y(i));
i = 52 <= y & y <= 61; z(i) = '0' - 52 + double(y(i));
i = y == 62; z(i) = '+';
i = y == 63; z(i) = '/';
y = z;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Add padding if necessary.
%
npbytes = 3 * nchunks - ndbytes; % number of padding bytes
if npbytes
y(end-npbytes+1 : end) = '='; % '=' is used for padding
end
if isempty(eol)
% reshape to a row vector
y = reshape(y, [1, nebytes]);
else
nlines = ceil(nebytes / 76); % number of lines
neolbytes = length(eol); % number of bytes in eol string
% pad data so it becomes a multiple of 76 elements
y = [y(:) ; zeros(76 * nlines - numel(y), 1)];
y(nebytes + 1 : 76 * nlines) = 0;
y = reshape(y, 76, nlines);
% insert eol strings
eol = eol(:);
y(end + 1 : end + neolbytes, :) = eol(:, ones(1, nlines));
% remove padding, but keep the last eol string
m = nebytes + neolbytes * (nlines - 1);
n = (76+neolbytes)*nlines - neolbytes;
y(m+1 : n) = '';
% extract and reshape to row vector
y = reshape(y, 1, m+neolbytes);
end
% output is a character array
y = char(y);
end

View File

@@ -0,0 +1,20 @@
% submitWeb Creates files from your code and output for web submission.
%
% If the submit function does not work for you, use the web-submission mechanism.
% Call this function to produce a file for the part you wish to submit. Then,
% submit the file to the class servers using the "Web Submission" button on the
% Programming Exercises page on the course website.
%
% You should call this function without arguments (submitWeb), to receive
% an interactive prompt for submission; optionally you can call it with the partID
% if you so wish. Make sure your working directory is set to the directory
% containing the submitWeb.m file and your assignment files.
function submitWeb(partId)
if ~exist('partId', 'var') || isempty(partId)
partId = [];
end
submit(partId, 1);
end

Binary file not shown.

View File

@@ -0,0 +1,59 @@
function [h, display_array] = displayData(X, example_width)
%DISPLAYDATA Display 2D data in a nice grid
% [h, display_array] = DISPLAYDATA(X, example_width) displays 2D data
% stored in X in a nice grid. It returns the figure handle h and the
% displayed array if requested.
% Set example_width automatically if not passed in
if ~exist('example_width', 'var') || isempty(example_width)
example_width = round(sqrt(size(X, 2)));
end
% Gray Image
colormap(gray);
% Compute rows, cols
[m n] = size(X);
example_height = (n / example_width);
% Compute number of items to display
display_rows = floor(sqrt(m));
display_cols = ceil(m / display_rows);
% Between images padding
pad = 1;
% Setup blank display
display_array = - ones(pad + display_rows * (example_height + pad), ...
pad + display_cols * (example_width + pad));
% Copy each example into a patch on the display array
curr_ex = 1;
for j = 1:display_rows
for i = 1:display_cols
if curr_ex > m,
break;
end
% Copy the patch
% Get the max value of the patch
max_val = max(abs(X(curr_ex, :)));
display_array(pad + (j - 1) * (example_height + pad) + (1:example_height), ...
pad + (i - 1) * (example_width + pad) + (1:example_width)) = ...
reshape(X(curr_ex, :), example_height, example_width) / max_val;
curr_ex = curr_ex + 1;
end
if curr_ex > m,
break;
end
end
% Display Image
h = imagesc(display_array, [-1 1]);
% Do not show axis
axis image off
drawnow;
end

View File

@@ -0,0 +1,69 @@
%% Machine Learning Online Class - Exercise 3 | Part 1: One-vs-all
% Instructions
% ------------
%
% This file contains code that helps you get started on the
% linear exercise. You will need to complete the following functions
% in this exericse:
%
% lrCostFunction.m (logistic regression cost function)
% oneVsAll.m
% predictOneVsAll.m
% predict.m
%
% For this exercise, you will not need to change any code in this file,
% or any other files other than those mentioned above.
%
%% Initialization
clear ; close all; clc
%% Setup the parameters you will use for this part of the exercise
input_layer_size = 400; % 20x20 Input Images of Digits
num_labels = 10; % 10 labels, from 1 to 10
% (note that we have mapped "0" to label 10)
%% =========== Part 1: Loading and Visualizing Data =============
% We start the exercise by first loading and visualizing the dataset.
% You will be working with a dataset that contains handwritten digits.
%
% Load Training Data
fprintf('Loading and Visualizing Data ...\n')
load('ex3data1.mat'); % training data stored in arrays X, y
m = size(X, 1);
% Randomly select 100 data points to display
rand_indices = randperm(m);
sel = X(rand_indices(1:100), :);
%displayData(sel);
fprintf('Program paused. Press enter to continue.\n');
pause;
%% ============ Part 2: Vectorize Logistic Regression ============
% In this part of the exercise, you will reuse your logistic regression
% code from the last exercise. You task here is to make sure that your
% regularized logistic regression implementation is vectorized. After
% that, you will implement one-vs-all classification for the handwritten
% digit dataset.
%
fprintf('\nTraining One-vs-All Logistic Regression...\n')
lambda = 0.1;
[all_theta] = oneVsAll(X, y, num_labels, lambda);
fprintf('Program paused. Press enter to continue.\n');
pause;
%% ================ Part 3: Predict for One-Vs-All ================
% After ...
pred = predictOneVsAll(all_theta, X);
fprintf('\nTraining Set Accuracy: %f\n', mean(double(pred == y)) * 100);

View File

@@ -0,0 +1,88 @@
%% Machine Learning Online Class - Exercise 3 | Part 2: Neural Networks
% Instructions
% ------------
%
% This file contains code that helps you get started on the
% linear exercise. You will need to complete the following functions
% in this exericse:
%
% lrCostFunction.m (logistic regression cost function)
% oneVsAll.m
% predictOneVsAll.m
% predict.m
%
% For this exercise, you will not need to change any code in this file,
% or any other files other than those mentioned above.
%
%% Initialization
clear ; close all; clc
%% Setup the parameters you will use for this exercise
input_layer_size = 400; % 20x20 Input Images of Digits
hidden_layer_size = 25; % 25 hidden units
num_labels = 10; % 10 labels, from 1 to 10
% (note that we have mapped "0" to label 10)
%% =========== Part 1: Loading and Visualizing Data =============
% We start the exercise by first loading and visualizing the dataset.
% You will be working with a dataset that contains handwritten digits.
%
% Load Training Data
fprintf('Loading and Visualizing Data ...\n')
load('ex3data1.mat');
m = size(X, 1);
% Randomly select 100 data points to display
sel = randperm(size(X, 1));
sel = sel(1:100);
displayData(X(sel, :));
fprintf('Program paused. Press enter to continue.\n');
pause;
%% ================ Part 2: Loading Pameters ================
% In this part of the exercise, we load some pre-initialized
% neural network parameters.
fprintf('\nLoading Saved Neural Network Parameters ...\n')
% Load the weights into variables Theta1 and Theta2
load('ex3weights.mat');
%% ================= Part 3: Implement Predict =================
% After training the neural network, we would like to use it to predict
% the labels. You will now implement the "predict" function to use the
% neural network to predict the labels of the training set. This lets
% you compute the training set accuracy.
pred = predict(Theta1, Theta2, X);
fprintf('\nTraining Set Accuracy: %f\n', mean(double(pred == y)) * 100);
fprintf('Program paused. Press enter to continue.\n');
pause;
% To give you an idea of the network's output, you can also run
% through the examples one at the a time to see what it is predicting.
% Randomly permute examples
rp = randperm(m);
for i = 1:m
% Display
fprintf('\nDisplaying Example Image\n');
displayData(X(rp(i), :));
pred = predict(Theta1, Theta2, X(rp(i),:));
fprintf('\nNeural Network Prediction: %d (digit %d)\n', pred, mod(pred, 10));
% Pause
fprintf('Program paused. Press enter to continue.\n');
pause;
end

View File

@@ -0,0 +1,175 @@
function [X, fX, i] = fmincg(f, X, options, P1, P2, P3, P4, P5)
% Minimize a continuous differentialble multivariate function. Starting point
% is given by "X" (D by 1), and the function named in the string "f", must
% return a function value and a vector of partial derivatives. The Polack-
% Ribiere flavour of conjugate gradients is used to compute search directions,
% and a line search using quadratic and cubic polynomial approximations and the
% Wolfe-Powell stopping criteria is used together with the slope ratio method
% for guessing initial step sizes. Additionally a bunch of checks are made to
% make sure that exploration is taking place and that extrapolation will not
% be unboundedly large. The "length" gives the length of the run: if it is
% positive, it gives the maximum number of line searches, if negative its
% absolute gives the maximum allowed number of function evaluations. You can
% (optionally) give "length" a second component, which will indicate the
% reduction in function value to be expected in the first line-search (defaults
% to 1.0). The function returns when either its length is up, or if no further
% progress can be made (ie, we are at a minimum, or so close that due to
% numerical problems, we cannot get any closer). If the function terminates
% within a few iterations, it could be an indication that the function value
% and derivatives are not consistent (ie, there may be a bug in the
% implementation of your "f" function). The function returns the found
% solution "X", a vector of function values "fX" indicating the progress made
% and "i" the number of iterations (line searches or function evaluations,
% depending on the sign of "length") used.
%
% Usage: [X, fX, i] = fmincg(f, X, options, P1, P2, P3, P4, P5)
%
% See also: checkgrad
%
% Copyright (C) 2001 and 2002 by Carl Edward Rasmussen. Date 2002-02-13
%
%
% (C) Copyright 1999, 2000 & 2001, Carl Edward Rasmussen
%
% Permission is granted for anyone to copy, use, or modify these
% programs and accompanying documents for purposes of research or
% education, provided this copyright notice is retained, and note is
% made of any changes that have been made.
%
% These programs and documents are distributed without any warranty,
% express or implied. As the programs were written for research
% purposes only, they have not been tested to the degree that would be
% advisable in any important application. All use of these programs is
% entirely at the user's own risk.
%
% [ml-class] Changes Made:
% 1) Function name and argument specifications
% 2) Output display
%
% Read options
if exist('options', 'var') && ~isempty(options) && isfield(options, 'MaxIter')
length = options.MaxIter;
else
length = 100;
end
RHO = 0.01; % a bunch of constants for line searches
SIG = 0.5; % RHO and SIG are the constants in the Wolfe-Powell conditions
INT = 0.1; % don't reevaluate within 0.1 of the limit of the current bracket
EXT = 3.0; % extrapolate maximum 3 times the current bracket
MAX = 20; % max 20 function evaluations per line search
RATIO = 100; % maximum allowed slope ratio
argstr = ['feval(f, X']; % compose string used to call function
for i = 1:(nargin - 3)
argstr = [argstr, ',P', int2str(i)];
end
argstr = [argstr, ')'];
if max(size(length)) == 2, red=length(2); length=length(1); else red=1; end
S=['Iteration '];
i = 0; % zero the run length counter
ls_failed = 0; % no previous line search has failed
fX = [];
[f1 df1] = eval(argstr); % get function value and gradient
i = i + (length<0); % count epochs?!
s = -df1; % search direction is steepest
d1 = -s'*s; % this is the slope
z1 = red/(1-d1); % initial step is red/(|s|+1)
while i < abs(length) % while not finished
i = i + (length>0); % count iterations?!
X0 = X; f0 = f1; df0 = df1; % make a copy of current values
X = X + z1*s; % begin line search
[f2 df2] = eval(argstr);
i = i + (length<0); % count epochs?!
d2 = df2'*s;
f3 = f1; d3 = d1; z3 = -z1; % initialize point 3 equal to point 1
if length>0, M = MAX; else M = min(MAX, -length-i); end
success = 0; limit = -1; % initialize quanteties
while 1
while ((f2 > f1+z1*RHO*d1) | (d2 > -SIG*d1)) & (M > 0)
limit = z1; % tighten the bracket
if f2 > f1
z2 = z3 - (0.5*d3*z3*z3)/(d3*z3+f2-f3); % quadratic fit
else
A = 6*(f2-f3)/z3+3*(d2+d3); % cubic fit
B = 3*(f3-f2)-z3*(d3+2*d2);
z2 = (sqrt(B*B-A*d2*z3*z3)-B)/A; % numerical error possible - ok!
end
if isnan(z2) | isinf(z2)
z2 = z3/2; % if we had a numerical problem then bisect
end
z2 = max(min(z2, INT*z3),(1-INT)*z3); % don't accept too close to limits
z1 = z1 + z2; % update the step
X = X + z2*s;
[f2 df2] = eval(argstr);
M = M - 1; i = i + (length<0); % count epochs?!
d2 = df2'*s;
z3 = z3-z2; % z3 is now relative to the location of z2
end
if f2 > f1+z1*RHO*d1 | d2 > -SIG*d1
break; % this is a failure
elseif d2 > SIG*d1
success = 1; break; % success
elseif M == 0
break; % failure
end
A = 6*(f2-f3)/z3+3*(d2+d3); % make cubic extrapolation
B = 3*(f3-f2)-z3*(d3+2*d2);
z2 = -d2*z3*z3/(B+sqrt(B*B-A*d2*z3*z3)); % num. error possible - ok!
if ~isreal(z2) | isnan(z2) | isinf(z2) | z2 < 0 % num prob or wrong sign?
if limit < -0.5 % if we have no upper limit
z2 = z1 * (EXT-1); % the extrapolate the maximum amount
else
z2 = (limit-z1)/2; % otherwise bisect
end
elseif (limit > -0.5) & (z2+z1 > limit) % extraplation beyond max?
z2 = (limit-z1)/2; % bisect
elseif (limit < -0.5) & (z2+z1 > z1*EXT) % extrapolation beyond limit
z2 = z1*(EXT-1.0); % set to extrapolation limit
elseif z2 < -z3*INT
z2 = -z3*INT;
elseif (limit > -0.5) & (z2 < (limit-z1)*(1.0-INT)) % too close to limit?
z2 = (limit-z1)*(1.0-INT);
end
f3 = f2; d3 = d2; z3 = -z2; % set point 3 equal to point 2
z1 = z1 + z2; X = X + z2*s; % update current estimates
[f2 df2] = eval(argstr);
M = M - 1; i = i + (length<0); % count epochs?!
d2 = df2'*s;
end % end of line search
if success % if line search succeeded
f1 = f2; fX = [fX' f1]';
fprintf('%s %4i | Cost: %4.6e\r', S, i, f1);
s = (df2'*df2-df1'*df2)/(df1'*df1)*s - df2; % Polack-Ribiere direction
tmp = df1; df1 = df2; df2 = tmp; % swap derivatives
d2 = df1'*s;
if d2 > 0 % new slope must be negative
s = -df1; % otherwise use steepest direction
d2 = -s'*s;
end
z1 = z1 * min(RATIO, d1/(d2-realmin)); % slope ratio but max RATIO
d1 = d2;
ls_failed = 0; % this line search did not fail
else
X = X0; f1 = f0; df1 = df0; % restore point from before failed line search
if ls_failed | i > abs(length) % line search failed twice in a row
break; % or we ran out of time, so we give up
end
tmp = df1; df1 = df2; df2 = tmp; % swap derivatives
s = -df1; % try steepest
d1 = -s'*s;
z1 = 1/(1-d1);
ls_failed = 1; % this line search failed
end
if exist('OCTAVE_VERSION')
fflush(stdout);
end
end
fprintf('\n');

View File

@@ -0,0 +1,58 @@
function [J, grad] = lrCostFunction(theta, X, y, lambda)
%LRCOSTFUNCTION Compute cost and gradient for logistic regression with
%regularization
% J = LRCOSTFUNCTION(theta, X, y, lambda) computes the cost of using
% theta as the parameter for regularized logistic regression and the
% gradient of the cost w.r.t. to the parameters.
% Initialize some useful values
m = length(y); % number of training examples
% You need to return the following variables correctly
J = 0;
grad = zeros(size(theta));
% ====================== YOUR CODE HERE ======================
% Instructions: Compute the cost of a particular choice of theta.
% You should set J to the cost.
% Compute the partial derivatives and set grad to the partial
% derivatives of the cost w.r.t. each parameter in theta
%
% Hint: The computation of the cost function and gradients can be
% efficiently vectorized. For example, consider the computation
%
% sigmoid(X * theta)
%
% Each row of the resulting matrix will contain the value of the
% prediction for that example. You can make use of this to vectorize
% the cost function and gradient computations.
%
% Hint: When computing the gradient of the regularized cost function,
% there're many possible vectorized solutions, but one solution
% looks like:
% grad = (unregularized gradient for logistic regression)
% temp = theta;
% temp(1) = 0; % because we don't add anything for j = 0
% grad = grad + YOUR_CODE_HERE (using the temp variable)
%
h = sigmoid( X*theta );
o = ones(size(y));
reg = theta;
reg(1) = 0;
J = sum( y .* log(h) + (o-y) .* log(o-h) ) / (-m) + (lambda/(2*m))*sum(reg.^2);
grad = (X'*(h - y)) / m + (lambda/m) * reg;
% =============================================================
grad = grad(:);
end

View File

@@ -0,0 +1,70 @@
function [all_theta] = oneVsAll(X, y, num_labels, lambda)
%ONEVSALL trains multiple logistic regression classifiers and returns all
%the classifiers in a matrix all_theta, where the i-th row of all_theta
%corresponds to the classifier for label i
% [all_theta] = ONEVSALL(X, y, num_labels, lambda) trains num_labels
% logisitc regression classifiers and returns each of these classifiers
% in a matrix all_theta, where the i-th row of all_theta corresponds
% to the classifier for label i
% Some useful variables
m = size(X, 1);
n = size(X, 2);
% You need to return the following variables correctly
all_theta = zeros(num_labels, n + 1);
% Add ones to the X data matrix
X = [ones(m, 1) X];
% ====================== YOUR CODE HERE ======================
% Instructions: You should complete the following code to train num_labels
% logistic regression classifiers with regularization
% parameter lambda.
%
% Hint: theta(:) will return a column vector.
%
% Hint: You can use y == c to obtain a vector of 1's and 0's that tell use
% whether the ground truth is true/false for this class.
%
% Note: For this assignment, we recommend using fmincg to optimize the cost
% function. It is okay to use a for-loop (for c = 1:num_labels) to
% loop over the different classes.
%
% fmincg works similarly to fminunc, but is more efficient when we
% are dealing with large number of parameters.
%
% Example Code for fmincg:
%
% % Set Initial theta
% initial_theta = zeros(n + 1, 1);
%
% % Set options for fminunc
% options = optimset('GradObj', 'on', 'MaxIter', 50);
%
% % Run fmincg to obtain the optimal theta
% % This function will return theta and the cost
% [theta] = ...
% fmincg (@(t)(lrCostFunction(t, X, (y == c), lambda)), ...
% initial_theta, options);
%
options = optimset('GradObj', 'on', 'MaxIter', 50);
initial_theta = zeros(n + 1, 1);
for c = 1:num_labels,
theta = fmincg (@(t)(lrCostFunction(t, X, (y == c), lambda)), initial_theta, options);
all_theta(c,:) = theta;
end;
% =========================================================================
end

View File

@@ -0,0 +1,33 @@
function p = predict(Theta1, Theta2, X)
%PREDICT Predict the label of an input given a trained neural network
% p = PREDICT(Theta1, Theta2, X) outputs the predicted label of X given the
% trained weights of a neural network (Theta1, Theta2)
% Useful values
m = size(X, 1);
num_labels = size(Theta2, 1);
% You need to return the following variables correctly
p = zeros(size(X, 1), 1);
% ====================== YOUR CODE HERE ======================
% Instructions: Complete the following code to make predictions using
% your learned neural network. You should set p to a
% vector containing labels between 1 to num_labels.
%
% Hint: The max function might come in useful. In particular, the max
% function can also return the index of the max element, for more
% information see 'help max'. If your examples are in rows, then, you
% can use max(A, [], 2) to obtain the max for each row.
%
X = [ones(m, 1) X];
a2 = [ones(m,1) sigmoid(X*Theta1')];
a3 = sigmoid(a2*Theta2');
[m, p] = max( a3, [], 2 );
% =========================================================================
end

View File

@@ -0,0 +1,39 @@
function p = predictOneVsAll(all_theta, X)
%PREDICT Predict the label for a trained one-vs-all classifier. The labels
%are in the range 1..K, where K = size(all_theta, 1).
% p = PREDICTONEVSALL(all_theta, X) will return a vector of predictions
% for each example in the matrix X. Note that X contains the examples in
% rows. all_theta is a matrix where the i-th row is a trained logistic
% regression theta vector for the i-th class. You should set p to a vector
% of values from 1..K (e.g., p = [1; 3; 1; 2] predicts classes 1, 3, 1, 2
% for 4 examples)
m = size(X, 1);
num_labels = size(all_theta, 1);
% You need to return the following variables correctly
p = zeros(size(X, 1), 1);
% Add ones to the X data matrix
X = [ones(m, 1) X];
% ====================== YOUR CODE HERE ======================
% Instructions: Complete the following code to make predictions using
% your learned logistic regression parameters (one-vs-all).
% You should set p to a vector of predictions (from 1 to
% num_labels).
%
% Hint: This code can be done all vectorized using the max function.
% In particular, the max function can also return the index of the
% max element, for more information see 'help max'. If your examples
% are in rows, then, you can use max(A, [], 2) to obtain the max
% for each row.
%
[m, p] = max( sigmoid( all_theta * X' ) );
p = p';
% =========================================================================
end

View File

@@ -0,0 +1,6 @@
function g = sigmoid(z)
%SIGMOID Compute sigmoid functoon
% J = SIGMOID(z) computes the sigmoid of z.
g = 1.0 ./ (1.0 + exp(-z));
end

View File

@@ -0,0 +1,574 @@
function submit(partId, webSubmit)
%SUBMIT Submit your code and output to the ml-class servers
% SUBMIT() will connect to the ml-class server and submit your solution
fprintf('==\n== [ml-class] Submitting Solutions | Programming Exercise %s\n==\n', ...
homework_id());
if ~exist('partId', 'var') || isempty(partId)
partId = promptPart();
end
if ~exist('webSubmit', 'var') || isempty(webSubmit)
webSubmit = 0; % submit directly by default
end
% Check valid partId
partNames = validParts();
if ~isValidPartId(partId)
fprintf('!! Invalid homework part selected.\n');
fprintf('!! Expected an integer from 1 to %d.\n', numel(partNames) + 1);
fprintf('!! Submission Cancelled\n');
return
end
if ~exist('ml_login_data.mat','file')
[login password] = loginPrompt();
save('ml_login_data.mat','login','password');
else
load('ml_login_data.mat');
[login password] = quickLogin(login, password);
save('ml_login_data.mat','login','password');
end
if isempty(login)
fprintf('!! Submission Cancelled\n');
return
end
fprintf('\n== Connecting to ml-class ... ');
if exist('OCTAVE_VERSION')
fflush(stdout);
end
% Setup submit list
if partId == numel(partNames) + 1
submitParts = 1:numel(partNames);
else
submitParts = [partId];
end
for s = 1:numel(submitParts)
thisPartId = submitParts(s);
if (~webSubmit) % submit directly to server
[login, ch, signature, auxstring] = getChallenge(login, thisPartId);
if isempty(login) || isempty(ch) || isempty(signature)
% Some error occured, error string in first return element.
fprintf('\n!! Error: %s\n\n', login);
return
end
% Attempt Submission with Challenge
ch_resp = challengeResponse(login, password, ch);
[result, str] = submitSolution(login, ch_resp, thisPartId, ...
output(thisPartId, auxstring), source(thisPartId), signature);
partName = partNames{thisPartId};
fprintf('\n== [ml-class] Submitted Assignment %s - Part %d - %s\n', ...
homework_id(), thisPartId, partName);
fprintf('== %s\n', strtrim(str));
if exist('OCTAVE_VERSION')
fflush(stdout);
end
else
[result] = submitSolutionWeb(login, thisPartId, output(thisPartId), ...
source(thisPartId));
result = base64encode(result);
fprintf('\nSave as submission file [submit_ex%s_part%d.txt (enter to accept default)]:', ...
homework_id(), thisPartId);
saveAsFile = input('', 's');
if (isempty(saveAsFile))
saveAsFile = sprintf('submit_ex%s_part%d.txt', homework_id(), thisPartId);
end
fid = fopen(saveAsFile, 'w');
if (fid)
fwrite(fid, result);
fclose(fid);
fprintf('\nSaved your solutions to %s.\n\n', saveAsFile);
fprintf(['You can now submit your solutions through the web \n' ...
'form in the programming exercises. Select the corresponding \n' ...
'programming exercise to access the form.\n']);
else
fprintf('Unable to save to %s\n\n', saveAsFile);
fprintf(['You can create a submission file by saving the \n' ...
'following text in a file: (press enter to continue)\n\n']);
pause;
fprintf(result);
end
end
end
end
% ================== CONFIGURABLES FOR EACH HOMEWORK ==================
function id = homework_id()
id = '3';
end
function [partNames] = validParts()
partNames = { 'Vectorized Logistic Regression ', ...
'One-vs-all classifier training', ...
'One-vs-all classifier prediction', ...
'Neural network prediction function' ...
};
end
function srcs = sources()
% Separated by part
srcs = { { 'lrCostFunction.m' }, ...
{ 'oneVsAll.m' }, ...
{ 'predictOneVsAll.m' }, ...
{ 'predict.m' } };
end
function out = output(partId, auxdata)
% Random Test Cases
X = [ones(20,1) (exp(1) * sin(1:1:20))' (exp(0.5) * cos(1:1:20))'];
y = sin(X(:,1) + X(:,2)) > 0;
Xm = [ -1 -1 ; -1 -2 ; -2 -1 ; -2 -2 ; ...
1 1 ; 1 2 ; 2 1 ; 2 2 ; ...
-1 1 ; -1 2 ; -2 1 ; -2 2 ; ...
1 -1 ; 1 -2 ; -2 -1 ; -2 -2 ];
ym = [ 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 ]';
t1 = sin(reshape(1:2:24, 4, 3));
t2 = cos(reshape(1:2:40, 4, 5));
if partId == 1
[J, grad] = lrCostFunction([0.25 0.5 -0.5]', X, y, 0.1);
out = sprintf('%0.5f ', J);
out = [out sprintf('%0.5f ', grad)];
elseif partId == 2
out = sprintf('%0.5f ', oneVsAll(Xm, ym, 4, 0.1));
elseif partId == 3
out = sprintf('%0.5f ', predictOneVsAll(t1, Xm));
elseif partId == 4
out = sprintf('%0.5f ', predict(t1, t2, Xm));
end
end
% ====================== SERVER CONFIGURATION ===========================
% ***************** REMOVE -staging WHEN YOU DEPLOY *********************
function url = site_url()
url = 'http://class.coursera.org/ml-008';
end
function url = challenge_url()
url = [site_url() '/assignment/challenge'];
end
function url = submit_url()
url = [site_url() '/assignment/submit'];
end
% ========================= CHALLENGE HELPERS =========================
function src = source(partId)
src = '';
src_files = sources();
if partId <= numel(src_files)
flist = src_files{partId};
for i = 1:numel(flist)
fid = fopen(flist{i});
if (fid == -1)
error('Error opening %s (is it missing?)', flist{i});
end
line = fgets(fid);
while ischar(line)
src = [src line];
line = fgets(fid);
end
fclose(fid);
src = [src '||||||||'];
end
end
end
function ret = isValidPartId(partId)
partNames = validParts();
ret = (~isempty(partId)) && (partId >= 1) && (partId <= numel(partNames) + 1);
end
function partId = promptPart()
fprintf('== Select which part(s) to submit:\n');
partNames = validParts();
srcFiles = sources();
for i = 1:numel(partNames)
fprintf('== %d) %s [', i, partNames{i});
fprintf(' %s ', srcFiles{i}{:});
fprintf(']\n');
end
fprintf('== %d) All of the above \n==\nEnter your choice [1-%d]: ', ...
numel(partNames) + 1, numel(partNames) + 1);
selPart = input('', 's');
partId = str2num(selPart);
if ~isValidPartId(partId)
partId = -1;
end
end
function [email,ch,signature,auxstring] = getChallenge(email, part)
str = urlread(challenge_url(), 'post', {'email_address', email, 'assignment_part_sid', [homework_id() '-' num2str(part)], 'response_encoding', 'delim'});
str = strtrim(str);
r = struct;
while(numel(str) > 0)
[f, str] = strtok (str, '|');
[v, str] = strtok (str, '|');
r = setfield(r, f, v);
end
email = getfield(r, 'email_address');
ch = getfield(r, 'challenge_key');
signature = getfield(r, 'state');
auxstring = getfield(r, 'challenge_aux_data');
end
function [result, str] = submitSolutionWeb(email, part, output, source)
result = ['{"assignment_part_sid":"' base64encode([homework_id() '-' num2str(part)], '') '",' ...
'"email_address":"' base64encode(email, '') '",' ...
'"submission":"' base64encode(output, '') '",' ...
'"submission_aux":"' base64encode(source, '') '"' ...
'}'];
str = 'Web-submission';
end
function [result, str] = submitSolution(email, ch_resp, part, output, ...
source, signature)
params = {'assignment_part_sid', [homework_id() '-' num2str(part)], ...
'email_address', email, ...
'submission', base64encode(output, ''), ...
'submission_aux', base64encode(source, ''), ...
'challenge_response', ch_resp, ...
'state', signature};
str = urlread(submit_url(), 'post', params);
% Parse str to read for success / failure
result = 0;
end
% =========================== LOGIN HELPERS ===========================
function [login password] = loginPrompt()
% Prompt for password
[login password] = basicPrompt();
if isempty(login) || isempty(password)
login = []; password = [];
end
end
function [login password] = basicPrompt()
login = input('Login (Email address): ', 's');
password = input('Password: ', 's');
end
function [login password] = quickLogin(login,password)
disp(['You are currently logged in as ' login '.']);
cont_token = input('Is this you? (y/n - type n to reenter password)','s');
if(isempty(cont_token) || cont_token(1)=='Y'||cont_token(1)=='y')
return;
else
[login password] = loginPrompt();
end
end
function [str] = challengeResponse(email, passwd, challenge)
str = sha1([challenge passwd]);
end
% =============================== SHA-1 ================================
function hash = sha1(str)
% Initialize variables
h0 = uint32(1732584193);
h1 = uint32(4023233417);
h2 = uint32(2562383102);
h3 = uint32(271733878);
h4 = uint32(3285377520);
% Convert to word array
strlen = numel(str);
% Break string into chars and append the bit 1 to the message
mC = [double(str) 128];
mC = [mC zeros(1, 4-mod(numel(mC), 4), 'uint8')];
numB = strlen * 8;
if exist('idivide')
numC = idivide(uint32(numB + 65), 512, 'ceil');
else
numC = ceil(double(numB + 65)/512);
end
numW = numC * 16;
mW = zeros(numW, 1, 'uint32');
idx = 1;
for i = 1:4:strlen + 1
mW(idx) = bitor(bitor(bitor( ...
bitshift(uint32(mC(i)), 24), ...
bitshift(uint32(mC(i+1)), 16)), ...
bitshift(uint32(mC(i+2)), 8)), ...
uint32(mC(i+3)));
idx = idx + 1;
end
% Append length of message
mW(numW - 1) = uint32(bitshift(uint64(numB), -32));
mW(numW) = uint32(bitshift(bitshift(uint64(numB), 32), -32));
% Process the message in successive 512-bit chs
for cId = 1 : double(numC)
cSt = (cId - 1) * 16 + 1;
cEnd = cId * 16;
ch = mW(cSt : cEnd);
% Extend the sixteen 32-bit words into eighty 32-bit words
for j = 17 : 80
ch(j) = ch(j - 3);
ch(j) = bitxor(ch(j), ch(j - 8));
ch(j) = bitxor(ch(j), ch(j - 14));
ch(j) = bitxor(ch(j), ch(j - 16));
ch(j) = bitrotate(ch(j), 1);
end
% Initialize hash value for this ch
a = h0;
b = h1;
c = h2;
d = h3;
e = h4;
% Main loop
for i = 1 : 80
if(i >= 1 && i <= 20)
f = bitor(bitand(b, c), bitand(bitcmp(b), d));
k = uint32(1518500249);
elseif(i >= 21 && i <= 40)
f = bitxor(bitxor(b, c), d);
k = uint32(1859775393);
elseif(i >= 41 && i <= 60)
f = bitor(bitor(bitand(b, c), bitand(b, d)), bitand(c, d));
k = uint32(2400959708);
elseif(i >= 61 && i <= 80)
f = bitxor(bitxor(b, c), d);
k = uint32(3395469782);
end
t = bitrotate(a, 5);
t = bitadd(t, f);
t = bitadd(t, e);
t = bitadd(t, k);
t = bitadd(t, ch(i));
e = d;
d = c;
c = bitrotate(b, 30);
b = a;
a = t;
end
h0 = bitadd(h0, a);
h1 = bitadd(h1, b);
h2 = bitadd(h2, c);
h3 = bitadd(h3, d);
h4 = bitadd(h4, e);
end
hash = reshape(dec2hex(double([h0 h1 h2 h3 h4]), 8)', [1 40]);
hash = lower(hash);
end
function ret = bitadd(iA, iB)
ret = double(iA) + double(iB);
ret = bitset(ret, 33, 0);
ret = uint32(ret);
end
function ret = bitrotate(iA, places)
t = bitshift(iA, places - 32);
ret = bitshift(iA, places);
ret = bitor(ret, t);
end
% =========================== Base64 Encoder ============================
% Thanks to Peter John Acklam
%
function y = base64encode(x, eol)
%BASE64ENCODE Perform base64 encoding on a string.
%
% BASE64ENCODE(STR, EOL) encode the given string STR. EOL is the line ending
% sequence to use; it is optional and defaults to '\n' (ASCII decimal 10).
% The returned encoded string is broken into lines of no more than 76
% characters each, and each line will end with EOL unless it is empty. Let
% EOL be empty if you do not want the encoded string broken into lines.
%
% STR and EOL don't have to be strings (i.e., char arrays). The only
% requirement is that they are vectors containing values in the range 0-255.
%
% This function may be used to encode strings into the Base64 encoding
% specified in RFC 2045 - MIME (Multipurpose Internet Mail Extensions). The
% Base64 encoding is designed to represent arbitrary sequences of octets in a
% form that need not be humanly readable. A 65-character subset
% ([A-Za-z0-9+/=]) of US-ASCII is used, enabling 6 bits to be represented per
% printable character.
%
% Examples
% --------
%
% If you want to encode a large file, you should encode it in chunks that are
% a multiple of 57 bytes. This ensures that the base64 lines line up and
% that you do not end up with padding in the middle. 57 bytes of data fills
% one complete base64 line (76 == 57*4/3):
%
% If ifid and ofid are two file identifiers opened for reading and writing,
% respectively, then you can base64 encode the data with
%
% while ~feof(ifid)
% fwrite(ofid, base64encode(fread(ifid, 60*57)));
% end
%
% or, if you have enough memory,
%
% fwrite(ofid, base64encode(fread(ifid)));
%
% See also BASE64DECODE.
% Author: Peter John Acklam
% Time-stamp: 2004-02-03 21:36:56 +0100
% E-mail: pjacklam@online.no
% URL: http://home.online.no/~pjacklam
if isnumeric(x)
x = num2str(x);
end
% make sure we have the EOL value
if nargin < 2
eol = sprintf('\n');
else
if sum(size(eol) > 1) > 1
error('EOL must be a vector.');
end
if any(eol(:) > 255)
error('EOL can not contain values larger than 255.');
end
end
if sum(size(x) > 1) > 1
error('STR must be a vector.');
end
x = uint8(x);
eol = uint8(eol);
ndbytes = length(x); % number of decoded bytes
nchunks = ceil(ndbytes / 3); % number of chunks/groups
nebytes = 4 * nchunks; % number of encoded bytes
% add padding if necessary, to make the length of x a multiple of 3
if rem(ndbytes, 3)
x(end+1 : 3*nchunks) = 0;
end
x = reshape(x, [3, nchunks]); % reshape the data
y = repmat(uint8(0), 4, nchunks); % for the encoded data
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Split up every 3 bytes into 4 pieces
%
% aaaaaabb bbbbcccc ccdddddd
%
% to form
%
% 00aaaaaa 00bbbbbb 00cccccc 00dddddd
%
y(1,:) = bitshift(x(1,:), -2); % 6 highest bits of x(1,:)
y(2,:) = bitshift(bitand(x(1,:), 3), 4); % 2 lowest bits of x(1,:)
y(2,:) = bitor(y(2,:), bitshift(x(2,:), -4)); % 4 highest bits of x(2,:)
y(3,:) = bitshift(bitand(x(2,:), 15), 2); % 4 lowest bits of x(2,:)
y(3,:) = bitor(y(3,:), bitshift(x(3,:), -6)); % 2 highest bits of x(3,:)
y(4,:) = bitand(x(3,:), 63); % 6 lowest bits of x(3,:)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Now perform the following mapping
%
% 0 - 25 -> A-Z
% 26 - 51 -> a-z
% 52 - 61 -> 0-9
% 62 -> +
% 63 -> /
%
% We could use a mapping vector like
%
% ['A':'Z', 'a':'z', '0':'9', '+/']
%
% but that would require an index vector of class double.
%
z = repmat(uint8(0), size(y));
i = y <= 25; z(i) = 'A' + double(y(i));
i = 26 <= y & y <= 51; z(i) = 'a' - 26 + double(y(i));
i = 52 <= y & y <= 61; z(i) = '0' - 52 + double(y(i));
i = y == 62; z(i) = '+';
i = y == 63; z(i) = '/';
y = z;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Add padding if necessary.
%
npbytes = 3 * nchunks - ndbytes; % number of padding bytes
if npbytes
y(end-npbytes+1 : end) = '='; % '=' is used for padding
end
if isempty(eol)
% reshape to a row vector
y = reshape(y, [1, nebytes]);
else
nlines = ceil(nebytes / 76); % number of lines
neolbytes = length(eol); % number of bytes in eol string
% pad data so it becomes a multiple of 76 elements
y = [y(:) ; zeros(76 * nlines - numel(y), 1)];
y(nebytes + 1 : 76 * nlines) = 0;
y = reshape(y, 76, nlines);
% insert eol strings
eol = eol(:);
y(end + 1 : end + neolbytes, :) = eol(:, ones(1, nlines));
% remove padding, but keep the last eol string
m = nebytes + neolbytes * (nlines - 1);
n = (76+neolbytes)*nlines - neolbytes;
y(m+1 : n) = '';
% extract and reshape to row vector
y = reshape(y, 1, m+neolbytes);
end
% output is a character array
y = char(y);
end

View File

@@ -0,0 +1,20 @@
% submitWeb Creates files from your code and output for web submission.
%
% If the submit function does not work for you, use the web-submission mechanism.
% Call this function to produce a file for the part you wish to submit. Then,
% submit the file to the class servers using the "Web Submission" button on the
% Programming Exercises page on the course website.
%
% You should call this function without arguments (submitWeb), to receive
% an interactive prompt for submission; optionally you can call it with the partID
% if you so wish. Make sure your working directory is set to the directory
% containing the submitWeb.m file and your assignment files.
function submitWeb(partId)
if ~exist('partId', 'var') || isempty(partId)
partId = [];
end
submit(partId, 1);
end

Binary file not shown.

View File

@@ -0,0 +1,52 @@
function checkNNGradients(lambda)
%CHECKNNGRADIENTS Creates a small neural network to check the
%backpropagation gradients
% CHECKNNGRADIENTS(lambda) Creates a small neural network to check the
% backpropagation gradients, it will output the analytical gradients
% produced by your backprop code and the numerical gradients (computed
% using computeNumericalGradient). These two gradient computations should
% result in very similar values.
%
if ~exist('lambda', 'var') || isempty(lambda)
lambda = 0;
end
input_layer_size = 3;
hidden_layer_size = 5;
num_labels = 3;
m = 5;
% We generate some 'random' test data
Theta1 = debugInitializeWeights(hidden_layer_size, input_layer_size);
Theta2 = debugInitializeWeights(num_labels, hidden_layer_size);
% Reusing debugInitializeWeights to generate X
X = debugInitializeWeights(m, input_layer_size - 1);
y = 1 + mod(1:m, num_labels)';
% Unroll parameters
nn_params = [Theta1(:) ; Theta2(:)];
% Short hand for cost function
costFunc = @(p) nnCostFunction(p, input_layer_size, hidden_layer_size, ...
num_labels, X, y, lambda);
[cost, grad] = costFunc(nn_params);
numgrad = computeNumericalGradient(costFunc, nn_params);
% Visually examine the two gradient computations. The two columns
% you get should be very similar.
disp([numgrad grad]);
fprintf(['The above two columns you get should be very similar.\n' ...
'(Left-Your Numerical Gradient, Right-Analytical Gradient)\n\n']);
% Evaluate the norm of the difference between two solutions.
% If you have a correct implementation, and assuming you used EPSILON = 0.0001
% in computeNumericalGradient.m, then diff below should be less than 1e-9
diff = norm(numgrad-grad)/norm(numgrad+grad);
fprintf(['If your backpropagation implementation is correct, then \n' ...
'the relative difference will be small (less than 1e-9). \n' ...
'\nRelative Difference: %g\n'], diff);
end

View File

@@ -0,0 +1,29 @@
function numgrad = computeNumericalGradient(J, theta)
%COMPUTENUMERICALGRADIENT Computes the gradient using "finite differences"
%and gives us a numerical estimate of the gradient.
% numgrad = COMPUTENUMERICALGRADIENT(J, theta) computes the numerical
% gradient of the function J around theta. Calling y = J(theta) should
% return the function value at theta.
% Notes: The following code implements numerical gradient checking, and
% returns the numerical gradient.It sets numgrad(i) to (a numerical
% approximation of) the partial derivative of J with respect to the
% i-th input argument, evaluated at theta. (i.e., numgrad(i) should
% be the (approximately) the partial derivative of J with respect
% to theta(i).)
%
numgrad = zeros(size(theta));
perturb = zeros(size(theta));
e = 1e-4;
for p = 1:numel(theta)
% Set perturbation vector
perturb(p) = e;
loss1 = J(theta - perturb);
loss2 = J(theta + perturb);
% Compute Numerical Gradient
numgrad(p) = (loss2 - loss1) / (2*e);
perturb(p) = 0;
end
end

View File

@@ -0,0 +1,22 @@
function W = debugInitializeWeights(fan_out, fan_in)
%DEBUGINITIALIZEWEIGHTS Initialize the weights of a layer with fan_in
%incoming connections and fan_out outgoing connections using a fixed
%strategy, this will help you later in debugging
% W = DEBUGINITIALIZEWEIGHTS(fan_in, fan_out) initializes the weights
% of a layer with fan_in incoming connections and fan_out outgoing
% connections using a fix set of values
%
% Note that W should be set to a matrix of size(1 + fan_in, fan_out) as
% the first row of W handles the "bias" terms
%
% Set W to zeros
W = zeros(fan_out, 1 + fan_in);
% Initialize W using "sin", this ensures that W is always of the same
% values and will be useful for debugging
W = reshape(sin(1:numel(W)), size(W)) / 10;
% =========================================================================
end

View File

@@ -0,0 +1,59 @@
function [h, display_array] = displayData(X, example_width)
%DISPLAYDATA Display 2D data in a nice grid
% [h, display_array] = DISPLAYDATA(X, example_width) displays 2D data
% stored in X in a nice grid. It returns the figure handle h and the
% displayed array if requested.
% Set example_width automatically if not passed in
if ~exist('example_width', 'var') || isempty(example_width)
example_width = round(sqrt(size(X, 2)));
end
% Gray Image
colormap(gray);
% Compute rows, cols
[m n] = size(X);
example_height = (n / example_width);
% Compute number of items to display
display_rows = floor(sqrt(m));
display_cols = ceil(m / display_rows);
% Between images padding
pad = 1;
% Setup blank display
display_array = - ones(pad + display_rows * (example_height + pad), ...
pad + display_cols * (example_width + pad));
% Copy each example into a patch on the display array
curr_ex = 1;
for j = 1:display_rows
for i = 1:display_cols
if curr_ex > m,
break;
end
% Copy the patch
% Get the max value of the patch
max_val = max(abs(X(curr_ex, :)));
display_array(pad + (j - 1) * (example_height + pad) + (1:example_height), ...
pad + (i - 1) * (example_width + pad) + (1:example_width)) = ...
reshape(X(curr_ex, :), example_height, example_width) / max_val;
curr_ex = curr_ex + 1;
end
if curr_ex > m,
break;
end
end
% Display Image
h = imagesc(display_array, [-1 1]);
% Do not show axis
axis image off
drawnow;
end

View File

@@ -0,0 +1,234 @@
%% Machine Learning Online Class - Exercise 4 Neural Network Learning
% Instructions
% ------------
%
% This file contains code that helps you get started on the
% linear exercise. You will need to complete the following functions
% in this exericse:
%
% sigmoidGradient.m
% randInitializeWeights.m
% nnCostFunction.m
%
% For this exercise, you will not need to change any code in this file,
% or any other files other than those mentioned above.
%
%% Initialization
clear ; close all; clc
%% Setup the parameters you will use for this exercise
input_layer_size = 400; % 20x20 Input Images of Digits
hidden_layer_size = 25; % 25 hidden units
num_labels = 10; % 10 labels, from 1 to 10
% (note that we have mapped "0" to label 10)
%% =========== Part 1: Loading and Visualizing Data =============
% We start the exercise by first loading and visualizing the dataset.
% You will be working with a dataset that contains handwritten digits.
%
% Load Training Data
fprintf('Loading and Visualizing Data ...\n')
load('ex4data1.mat');
m = size(X, 1);
% Randomly select 100 data points to display
%sel = randperm(size(X, 1));
%sel = sel(1:100);
%displayData(X(sel, :));
%fprintf('Program paused. Press enter to continue.\n');
%pause;
%% ================ Part 2: Loading Parameters ================
% In this part of the exercise, we load some pre-initialized
% neural network parameters.
fprintf('\nLoading Saved Neural Network Parameters ...\n')
% Load the weights into variables Theta1 and Theta2
load('ex4weights.mat');
% Unroll parameters
nn_params = [Theta1(:) ; Theta2(:)];
%% ================ Part 3: Compute Cost (Feedforward) ================
% To the neural network, you should first start by implementing the
% feedforward part of the neural network that returns the cost only. You
% should complete the code in nnCostFunction.m to return cost. After
% implementing the feedforward to compute the cost, you can verify that
% your implementation is correct by verifying that you get the same cost
% as us for the fixed debugging parameters.
%
% We suggest implementing the feedforward cost *without* regularization
% first so that it will be easier for you to debug. Later, in part 4, you
% will get to implement the regularized cost.
%
fprintf('\nFeedforward Using Neural Network ...\n')
% Weight regularization parameter (we set this to 0 here).
lambda = 0;
J = nnCostFunction(nn_params, input_layer_size, hidden_layer_size, ...
num_labels, X, y, lambda);
fprintf(['Cost at parameters (loaded from ex4weights): %f '...
'\n(this value should be about 0.287629)\n'], J);
fprintf('\nProgram paused. Press enter to continue.\n');
%pause;
%% =============== Part 4: Implement Regularization ===============
% Once your cost function implementation is correct, you should now
% continue to implement the regularization with the cost.
%
fprintf('\nChecking Cost Function (w/ Regularization) ... \n')
% Weight regularization parameter (we set this to 1 here).
lambda = 1;
J = nnCostFunction(nn_params, input_layer_size, hidden_layer_size, ...
num_labels, X, y, lambda);
fprintf(['Cost at parameters (loaded from ex4weights): %f '...
'\n(this value should be about 0.383770)\n'], J);
fprintf('Program paused. Press enter to continue.\n');
%pause;
%% ================ Part 5: Sigmoid Gradient ================
% Before you start implementing the neural network, you will first
% implement the gradient for the sigmoid function. You should complete the
% code in the sigmoidGradient.m file.
%
fprintf('\nEvaluating sigmoid gradient...\n')
g = sigmoidGradient([1 -0.5 0 0.5 1]);
fprintf('Sigmoid gradient evaluated at [1 -0.5 0 0.5 1]:\n ');
fprintf('%f ', g);
fprintf('\n\n');
fprintf('Program paused. Press enter to continue.\n');
pause;
%% ================ Part 6: Initializing Pameters ================
% In this part of the exercise, you will be starting to implment a two
% layer neural network that classifies digits. You will start by
% implementing a function to initialize the weights of the neural network
% (randInitializeWeights.m)
fprintf('\nInitializing Neural Network Parameters ...\n')
initial_Theta1 = randInitializeWeights(input_layer_size, hidden_layer_size);
initial_Theta2 = randInitializeWeights(hidden_layer_size, num_labels);
% Unroll parameters
initial_nn_params = [initial_Theta1(:) ; initial_Theta2(:)];
%% =============== Part 7: Implement Backpropagation ===============
% Once your cost matches up with ours, you should proceed to implement the
% backpropagation algorithm for the neural network. You should add to the
% code you've written in nnCostFunction.m to return the partial
% derivatives of the parameters.
%
fprintf('\nChecking Backpropagation... \n');
% Check gradients by running checkNNGradients
checkNNGradients;
fprintf('\nProgram paused. Press enter to continue.\n');
pause;
%% =============== Part 8: Implement Regularization ===============
% Once your backpropagation implementation is correct, you should now
% continue to implement the regularization with the cost and gradient.
%
fprintf('\nChecking Backpropagation (w/ Regularization) ... \n')
% Check gradients by running checkNNGradients
lambda = 3;
checkNNGradients(lambda);
% Also output the costFunction debugging values
debug_J = nnCostFunction(nn_params, input_layer_size, ...
hidden_layer_size, num_labels, X, y, lambda);
fprintf(['\n\nCost at (fixed) debugging parameters (w/ lambda = 10): %f ' ...
'\n(this value should be about 0.576051)\n\n'], debug_J);
fprintf('Program paused. Press enter to continue.\n');
pause;
%% =================== Part 8: Training NN ===================
% You have now implemented all the code necessary to train a neural
% network. To train your neural network, we will now use "fmincg", which
% is a function which works similarly to "fminunc". Recall that these
% advanced optimizers are able to train our cost functions efficiently as
% long as we provide them with the gradient computations.
%
fprintf('\nTraining Neural Network... \n')
% After you have completed the assignment, change the MaxIter to a larger
% value to see how more training helps.
options = optimset('MaxIter', 50);
% You should also try different values of lambda
lambda = 1;
% Create "short hand" for the cost function to be minimized
costFunction = @(p) nnCostFunction(p, ...
input_layer_size, ...
hidden_layer_size, ...
num_labels, X, y, lambda);
% Now, costFunction is a function that takes in only one argument (the
% neural network parameters)
[nn_params, cost] = fmincg(costFunction, initial_nn_params, options);
% Obtain Theta1 and Theta2 back from nn_params
Theta1 = reshape(nn_params(1:hidden_layer_size * (input_layer_size + 1)), ...
hidden_layer_size, (input_layer_size + 1));
Theta2 = reshape(nn_params((1 + (hidden_layer_size * (input_layer_size + 1))):end), ...
num_labels, (hidden_layer_size + 1));
fprintf('Program paused. Press enter to continue.\n');
pause;
%% ================= Part 9: Visualize Weights =================
% You can now "visualize" what the neural network is learning by
% displaying the hidden units to see what features they are capturing in
% the data.
%fprintf('\nVisualizing Neural Network... \n')
%displayData(Theta1(:, 2:end));
%fprintf('\nProgram paused. Press enter to continue.\n');
%pause;
%% ================= Part 10: Implement Predict =================
% After training the neural network, we would like to use it to predict
% the labels. You will now implement the "predict" function to use the
% neural network to predict the labels of the training set. This lets
% you compute the training set accuracy.
pred = predict(Theta1, Theta2, X);
fprintf('\nTraining Set Accuracy: %f\n', mean(double(pred == y)) * 100);

View File

@@ -0,0 +1,175 @@
function [X, fX, i] = fmincg(f, X, options, P1, P2, P3, P4, P5)
% Minimize a continuous differentialble multivariate function. Starting point
% is given by "X" (D by 1), and the function named in the string "f", must
% return a function value and a vector of partial derivatives. The Polack-
% Ribiere flavour of conjugate gradients is used to compute search directions,
% and a line search using quadratic and cubic polynomial approximations and the
% Wolfe-Powell stopping criteria is used together with the slope ratio method
% for guessing initial step sizes. Additionally a bunch of checks are made to
% make sure that exploration is taking place and that extrapolation will not
% be unboundedly large. The "length" gives the length of the run: if it is
% positive, it gives the maximum number of line searches, if negative its
% absolute gives the maximum allowed number of function evaluations. You can
% (optionally) give "length" a second component, which will indicate the
% reduction in function value to be expected in the first line-search (defaults
% to 1.0). The function returns when either its length is up, or if no further
% progress can be made (ie, we are at a minimum, or so close that due to
% numerical problems, we cannot get any closer). If the function terminates
% within a few iterations, it could be an indication that the function value
% and derivatives are not consistent (ie, there may be a bug in the
% implementation of your "f" function). The function returns the found
% solution "X", a vector of function values "fX" indicating the progress made
% and "i" the number of iterations (line searches or function evaluations,
% depending on the sign of "length") used.
%
% Usage: [X, fX, i] = fmincg(f, X, options, P1, P2, P3, P4, P5)
%
% See also: checkgrad
%
% Copyright (C) 2001 and 2002 by Carl Edward Rasmussen. Date 2002-02-13
%
%
% (C) Copyright 1999, 2000 & 2001, Carl Edward Rasmussen
%
% Permission is granted for anyone to copy, use, or modify these
% programs and accompanying documents for purposes of research or
% education, provided this copyright notice is retained, and note is
% made of any changes that have been made.
%
% These programs and documents are distributed without any warranty,
% express or implied. As the programs were written for research
% purposes only, they have not been tested to the degree that would be
% advisable in any important application. All use of these programs is
% entirely at the user's own risk.
%
% [ml-class] Changes Made:
% 1) Function name and argument specifications
% 2) Output display
%
% Read options
if exist('options', 'var') && ~isempty(options) && isfield(options, 'MaxIter')
length = options.MaxIter;
else
length = 100;
end
RHO = 0.01; % a bunch of constants for line searches
SIG = 0.5; % RHO and SIG are the constants in the Wolfe-Powell conditions
INT = 0.1; % don't reevaluate within 0.1 of the limit of the current bracket
EXT = 3.0; % extrapolate maximum 3 times the current bracket
MAX = 20; % max 20 function evaluations per line search
RATIO = 100; % maximum allowed slope ratio
argstr = ['feval(f, X']; % compose string used to call function
for i = 1:(nargin - 3)
argstr = [argstr, ',P', int2str(i)];
end
argstr = [argstr, ')'];
if max(size(length)) == 2, red=length(2); length=length(1); else red=1; end
S=['Iteration '];
i = 0; % zero the run length counter
ls_failed = 0; % no previous line search has failed
fX = [];
[f1 df1] = eval(argstr); % get function value and gradient
i = i + (length<0); % count epochs?!
s = -df1; % search direction is steepest
d1 = -s'*s; % this is the slope
z1 = red/(1-d1); % initial step is red/(|s|+1)
while i < abs(length) % while not finished
i = i + (length>0); % count iterations?!
X0 = X; f0 = f1; df0 = df1; % make a copy of current values
X = X + z1*s; % begin line search
[f2 df2] = eval(argstr);
i = i + (length<0); % count epochs?!
d2 = df2'*s;
f3 = f1; d3 = d1; z3 = -z1; % initialize point 3 equal to point 1
if length>0, M = MAX; else M = min(MAX, -length-i); end
success = 0; limit = -1; % initialize quanteties
while 1
while ((f2 > f1+z1*RHO*d1) | (d2 > -SIG*d1)) & (M > 0)
limit = z1; % tighten the bracket
if f2 > f1
z2 = z3 - (0.5*d3*z3*z3)/(d3*z3+f2-f3); % quadratic fit
else
A = 6*(f2-f3)/z3+3*(d2+d3); % cubic fit
B = 3*(f3-f2)-z3*(d3+2*d2);
z2 = (sqrt(B*B-A*d2*z3*z3)-B)/A; % numerical error possible - ok!
end
if isnan(z2) | isinf(z2)
z2 = z3/2; % if we had a numerical problem then bisect
end
z2 = max(min(z2, INT*z3),(1-INT)*z3); % don't accept too close to limits
z1 = z1 + z2; % update the step
X = X + z2*s;
[f2 df2] = eval(argstr);
M = M - 1; i = i + (length<0); % count epochs?!
d2 = df2'*s;
z3 = z3-z2; % z3 is now relative to the location of z2
end
if f2 > f1+z1*RHO*d1 | d2 > -SIG*d1
break; % this is a failure
elseif d2 > SIG*d1
success = 1; break; % success
elseif M == 0
break; % failure
end
A = 6*(f2-f3)/z3+3*(d2+d3); % make cubic extrapolation
B = 3*(f3-f2)-z3*(d3+2*d2);
z2 = -d2*z3*z3/(B+sqrt(B*B-A*d2*z3*z3)); % num. error possible - ok!
if ~isreal(z2) | isnan(z2) | isinf(z2) | z2 < 0 % num prob or wrong sign?
if limit < -0.5 % if we have no upper limit
z2 = z1 * (EXT-1); % the extrapolate the maximum amount
else
z2 = (limit-z1)/2; % otherwise bisect
end
elseif (limit > -0.5) & (z2+z1 > limit) % extraplation beyond max?
z2 = (limit-z1)/2; % bisect
elseif (limit < -0.5) & (z2+z1 > z1*EXT) % extrapolation beyond limit
z2 = z1*(EXT-1.0); % set to extrapolation limit
elseif z2 < -z3*INT
z2 = -z3*INT;
elseif (limit > -0.5) & (z2 < (limit-z1)*(1.0-INT)) % too close to limit?
z2 = (limit-z1)*(1.0-INT);
end
f3 = f2; d3 = d2; z3 = -z2; % set point 3 equal to point 2
z1 = z1 + z2; X = X + z2*s; % update current estimates
[f2 df2] = eval(argstr);
M = M - 1; i = i + (length<0); % count epochs?!
d2 = df2'*s;
end % end of line search
if success % if line search succeeded
f1 = f2; fX = [fX' f1]';
fprintf('%s %4i | Cost: %4.6e\r', S, i, f1);
s = (df2'*df2-df1'*df2)/(df1'*df1)*s - df2; % Polack-Ribiere direction
tmp = df1; df1 = df2; df2 = tmp; % swap derivatives
d2 = df1'*s;
if d2 > 0 % new slope must be negative
s = -df1; % otherwise use steepest direction
d2 = -s'*s;
end
z1 = z1 * min(RATIO, d1/(d2-realmin)); % slope ratio but max RATIO
d1 = d2;
ls_failed = 0; % this line search did not fail
else
X = X0; f1 = f0; df1 = df0; % restore point from before failed line search
if ls_failed | i > abs(length) % line search failed twice in a row
break; % or we ran out of time, so we give up
end
tmp = df1; df1 = df2; df2 = tmp; % swap derivatives
s = -df1; % try steepest
d1 = -s'*s;
z1 = 1/(1-d1);
ls_failed = 1; % this line search failed
end
if exist('OCTAVE_VERSION')
fflush(stdout);
end
end
fprintf('\n');

View File

@@ -0,0 +1,129 @@
function [J grad] = nnCostFunction(nn_params, ...
input_layer_size, ...
hidden_layer_size, ...
num_labels, ...
X, y, lambda)
%NNCOSTFUNCTION Implements the neural network cost function for a two layer
%neural network which performs classification
% [J grad] = NNCOSTFUNCTON(nn_params, hidden_layer_size, num_labels, ...
% X, y, lambda) computes the cost and gradient of the neural network. The
% parameters for the neural network are "unrolled" into the vector
% nn_params and need to be converted back into the weight matrices.
%
% The returned parameter grad should be a "unrolled" vector of the
% partial derivatives of the neural network.
%
% Reshape nn_params back into the parameters Theta1 and Theta2, the weight matrices
% for our 2 layer neural network
Theta1 = reshape(nn_params(1:hidden_layer_size * (input_layer_size + 1)), ...
hidden_layer_size, (input_layer_size + 1));
Theta2 = reshape(nn_params((1 + (hidden_layer_size * (input_layer_size + 1))):end), ...
num_labels, (hidden_layer_size + 1));
% Setup some useful variables
m = size(X, 1);
% You need to return the following variables correctly
J = 0;
Theta1_grad = zeros(size(Theta1));
Theta2_grad = zeros(size(Theta2));
% ====================== YOUR CODE HERE ======================
% Instructions: You should complete the code by working through the
% following parts.
%
% Part 1: Feedforward the neural network and return the cost in the
% variable J. After implementing Part 1, you can verify that your
% cost function computation is correct by verifying the cost
% computed in ex4.m
%
% Part 2: Implement the backpropagation algorithm to compute the gradients
% Theta1_grad and Theta2_grad. You should return the partial derivatives of
% the cost function with respect to Theta1 and Theta2 in Theta1_grad and
% Theta2_grad, respectively. After implementing Part 2, you can check
% that your implementation is correct by running checkNNGradients
%
% Note: The vector y passed into the function is a vector of labels
% containing values from 1..K. You need to map this vector into a
% binary vector of 1's and 0's to be used with the neural network
% cost function.
%
% Hint: We recommend implementing backpropagation using a for-loop
% over the training examples if you are implementing it for the
% first time.
%
% Part 3: Implement regularization with the cost function and gradients.
%
% Hint: You can implement this around the code for
% backpropagation. That is, you can compute the gradients for
% the regularization separately and then add them to Theta1_grad
% and Theta2_grad from Part 2.
%
%
% Activations ....
%
a1 = [ones(m, 1) X];
a2 = [ones(m,1) sigmoid(a1*Theta1')];
a3 = sigmoid(a2*Theta2');
h = a3;
%
% Transform y to .....
%
Y = zeros(m,num_labels);
for i=1:m,
Y(i,y(i))=1;
end
%
% This is the J without ....
%
J = sum(sum( Y .* log(h) .+ (1-Y) .* log(1-h) )) / (-m);
J = J + (lambda/(2*m))*sum(sum(Theta1(:,2:size(Theta1,2)).^2));
J = J + (lambda/(2*m))*sum(sum(Theta2(:,2:size(Theta2,2)).^2));
%
% Gradient ....
%
d3 = a3 .- Y;
d2 = d3 * Theta2 .* (a2.*(1-a2));
dlt1 = zeros(size(Theta1));
dlt2 = zeros(size(Theta2));
for i=1:m,
dlt2 = dlt2 + d3(i,:)'*a2(i,:);
t = d2(i,:)'*a1(i,:);
t = t(2:size(t,1),:);
dlt1 = dlt1 + t;
end
Theta1_grad = dlt1/m;
Theta2_grad = dlt2/m;
%
% Regularization ....
%
r1 = lambda*Theta1/m;
r2 = lambda*Theta2/m;
t1s = size(Theta1);
r1 = [ zeros(t1s(1),1) r1(:,2:t1s(2))];
t2s = size(Theta2);
r2 = [ zeros(t2s(1),1) r2(:,2:t2s(2))];
Theta1_grad = Theta1_grad + r1;
Theta2_grad = Theta2_grad + r2;
% =========================================================================
% Unroll gradients
grad = [Theta1_grad(:) ; Theta2_grad(:)];
end

View File

@@ -0,0 +1,20 @@
function p = predict(Theta1, Theta2, X)
%PREDICT Predict the label of an input given a trained neural network
% p = PREDICT(Theta1, Theta2, X) outputs the predicted label of X given the
% trained weights of a neural network (Theta1, Theta2)
% Useful values
m = size(X, 1);
num_labels = size(Theta2, 1);
% You need to return the following variables correctly
p = zeros(size(X, 1), 1);
h1 = sigmoid([ones(m, 1) X] * Theta1');
h2 = sigmoid([ones(m, 1) h1] * Theta2');
[dummy, p] = max(h2, [], 2);
% =========================================================================
end

View File

@@ -0,0 +1,31 @@
function W = randInitializeWeights(L_in, L_out)
%RANDINITIALIZEWEIGHTS Randomly initialize the weights of a layer with L_in
%incoming connections and L_out outgoing connections
% W = RANDINITIALIZEWEIGHTS(L_in, L_out) randomly initializes the weights
% of a layer with L_in incoming connections and L_out outgoing
% connections.
%
% Note that W should be set to a matrix of size(L_out, 1 + L_in) as
% the column row of W handles the "bias" terms
%
% You need to return the following variables correctly
W = zeros(L_out, 1 + L_in);
% ====================== YOUR CODE HERE ======================
% Instructions: Initialize W randomly so that we break the symmetry while
% training the neural network.
%
% Note: The first row of W corresponds to the parameters for the bias units
%
eps = 0.001;
W = rand(L_out,1+L_in)*(2*eps) - eps;
% =========================================================================
end

View File

@@ -0,0 +1,6 @@
function g = sigmoid(z)
%SIGMOID Compute sigmoid functoon
% J = SIGMOID(z) computes the sigmoid of z.
g = 1.0 ./ (1.0 + exp(-z));
end

View File

@@ -0,0 +1,23 @@
function g = sigmoidGradient(z)
%SIGMOIDGRADIENT returns the gradient of the sigmoid function
%evaluated at z
% g = SIGMOIDGRADIENT(z) computes the gradient of the sigmoid function
% evaluated at z. This should work regardless if z is a matrix or a
% vector. In particular, if z is a vector or matrix, you should return
% the gradient for each element.
g = zeros(size(z));
% ====================== YOUR CODE HERE ======================
% Instructions: Compute the gradient of the sigmoid function evaluated at
% each value of z (z can be a matrix, vector or scalar).
e = exp(-1*z);
g = e ./ ((e+1).^2);
% =============================================================
end

View File

@@ -0,0 +1,578 @@
function submit(partId, webSubmit)
%SUBMIT Submit your code and output to the ml-class servers
% SUBMIT() will connect to the ml-class server and submit your solution
fprintf('==\n== [ml-class] Submitting Solutions | Programming Exercise %s\n==\n', ...
homework_id());
if ~exist('partId', 'var') || isempty(partId)
partId = promptPart();
end
if ~exist('webSubmit', 'var') || isempty(webSubmit)
webSubmit = 0; % submit directly by default
end
% Check valid partId
partNames = validParts();
if ~isValidPartId(partId)
fprintf('!! Invalid homework part selected.\n');
fprintf('!! Expected an integer from 1 to %d.\n', numel(partNames) + 1);
fprintf('!! Submission Cancelled\n');
return
end
if ~exist('ml_login_data.mat','file')
[login password] = loginPrompt();
save('ml_login_data.mat','login','password');
else
load('ml_login_data.mat');
[login password] = quickLogin(login, password);
save('ml_login_data.mat','login','password');
end
if isempty(login)
fprintf('!! Submission Cancelled\n');
return
end
fprintf('\n== Connecting to ml-class ... ');
if exist('OCTAVE_VERSION')
fflush(stdout);
end
% Setup submit list
if partId == numel(partNames) + 1
submitParts = 1:numel(partNames);
else
submitParts = [partId];
end
for s = 1:numel(submitParts)
thisPartId = submitParts(s);
if (~webSubmit) % submit directly to server
[login, ch, signature, auxstring] = getChallenge(login, thisPartId);
if isempty(login) || isempty(ch) || isempty(signature)
% Some error occured, error string in first return element.
fprintf('\n!! Error: %s\n\n', login);
return
end
% Attempt Submission with Challenge
ch_resp = challengeResponse(login, password, ch);
[result, str] = submitSolution(login, ch_resp, thisPartId, ...
output(thisPartId, auxstring), source(thisPartId), signature);
partName = partNames{thisPartId};
fprintf('\n== [ml-class] Submitted Assignment %s - Part %d - %s\n', ...
homework_id(), thisPartId, partName);
fprintf('== %s\n', strtrim(str));
if exist('OCTAVE_VERSION')
fflush(stdout);
end
else
[result] = submitSolutionWeb(login, thisPartId, output(thisPartId), ...
source(thisPartId));
result = base64encode(result);
fprintf('\nSave as submission file [submit_ex%s_part%d.txt (enter to accept default)]:', ...
homework_id(), thisPartId);
saveAsFile = input('', 's');
if (isempty(saveAsFile))
saveAsFile = sprintf('submit_ex%s_part%d.txt', homework_id(), thisPartId);
end
fid = fopen(saveAsFile, 'w');
if (fid)
fwrite(fid, result);
fclose(fid);
fprintf('\nSaved your solutions to %s.\n\n', saveAsFile);
fprintf(['You can now submit your solutions through the web \n' ...
'form in the programming exercises. Select the corresponding \n' ...
'programming exercise to access the form.\n']);
else
fprintf('Unable to save to %s\n\n', saveAsFile);
fprintf(['You can create a submission file by saving the \n' ...
'following text in a file: (press enter to continue)\n\n']);
pause;
fprintf(result);
end
end
end
end
% ================== CONFIGURABLES FOR EACH HOMEWORK ==================
function id = homework_id()
id = '4';
end
function [partNames] = validParts()
partNames = { 'Feedforward and Cost Function', ...
'Regularized Cost Function', ...
'Sigmoid Gradient', ...
'Neural Network Gradient (Backpropagation)' ...
'Regularized Gradient' ...
};
end
function srcs = sources()
% Separated by part
srcs = { { 'nnCostFunction.m' }, ...
{ 'nnCostFunction.m' }, ...
{ 'sigmoidGradient.m' }, ...
{ 'nnCostFunction.m' }, ...
{ 'nnCostFunction.m' } };
end
function out = output(partId, auxstring)
% Random Test Cases
X = reshape(3 * sin(1:1:30), 3, 10);
Xm = reshape(sin(1:32), 16, 2) / 5;
ym = 1 + mod(1:16,4)';
t1 = sin(reshape(1:2:24, 4, 3));
t2 = cos(reshape(1:2:40, 4, 5));
t = [t1(:) ; t2(:)];
if partId == 1
[J] = nnCostFunction(t, 2, 4, 4, Xm, ym, 0);
out = sprintf('%0.5f ', J);
elseif partId == 2
[J] = nnCostFunction(t, 2, 4, 4, Xm, ym, 1.5);
out = sprintf('%0.5f ', J);
elseif partId == 3
out = sprintf('%0.5f ', sigmoidGradient(X));
elseif partId == 4
[J, grad] = nnCostFunction(t, 2, 4, 4, Xm, ym, 0);
out = sprintf('%0.5f ', J);
out = [out sprintf('%0.5f ', grad)];
elseif partId == 5
[J, grad] = nnCostFunction(t, 2, 4, 4, Xm, ym, 1.5);
out = sprintf('%0.5f ', J);
out = [out sprintf('%0.5f ', grad)];
end
end
% ====================== SERVER CONFIGURATION ===========================
% ***************** REMOVE -staging WHEN YOU DEPLOY *********************
function url = site_url()
url = 'http://class.coursera.org/ml-008';
end
function url = challenge_url()
url = [site_url() '/assignment/challenge'];
end
function url = submit_url()
url = [site_url() '/assignment/submit'];
end
% ========================= CHALLENGE HELPERS =========================
function src = source(partId)
src = '';
src_files = sources();
if partId <= numel(src_files)
flist = src_files{partId};
for i = 1:numel(flist)
fid = fopen(flist{i});
if (fid == -1)
error('Error opening %s (is it missing?)', flist{i});
end
line = fgets(fid);
while ischar(line)
src = [src line];
line = fgets(fid);
end
fclose(fid);
src = [src '||||||||'];
end
end
end
function ret = isValidPartId(partId)
partNames = validParts();
ret = (~isempty(partId)) && (partId >= 1) && (partId <= numel(partNames) + 1);
end
function partId = promptPart()
fprintf('== Select which part(s) to submit:\n');
partNames = validParts();
srcFiles = sources();
for i = 1:numel(partNames)
fprintf('== %d) %s [', i, partNames{i});
fprintf(' %s ', srcFiles{i}{:});
fprintf(']\n');
end
fprintf('== %d) All of the above \n==\nEnter your choice [1-%d]: ', ...
numel(partNames) + 1, numel(partNames) + 1);
selPart = input('', 's');
partId = str2num(selPart);
if ~isValidPartId(partId)
partId = -1;
end
end
function [email,ch,signature,auxstring] = getChallenge(email, part)
str = urlread(challenge_url(), 'post', {'email_address', email, 'assignment_part_sid', [homework_id() '-' num2str(part)], 'response_encoding', 'delim'});
str = strtrim(str);
r = struct;
while(numel(str) > 0)
[f, str] = strtok (str, '|');
[v, str] = strtok (str, '|');
r = setfield(r, f, v);
end
email = getfield(r, 'email_address');
ch = getfield(r, 'challenge_key');
signature = getfield(r, 'state');
auxstring = getfield(r, 'challenge_aux_data');
end
function [result, str] = submitSolutionWeb(email, part, output, source)
result = ['{"assignment_part_sid":"' base64encode([homework_id() '-' num2str(part)], '') '",' ...
'"email_address":"' base64encode(email, '') '",' ...
'"submission":"' base64encode(output, '') '",' ...
'"submission_aux":"' base64encode(source, '') '"' ...
'}'];
str = 'Web-submission';
end
function [result, str] = submitSolution(email, ch_resp, part, output, ...
source, signature)
params = {'assignment_part_sid', [homework_id() '-' num2str(part)], ...
'email_address', email, ...
'submission', base64encode(output, ''), ...
'submission_aux', base64encode(source, ''), ...
'challenge_response', ch_resp, ...
'state', signature};
str = urlread(submit_url(), 'post', params);
% Parse str to read for success / failure
result = 0;
end
% =========================== LOGIN HELPERS ===========================
function [login password] = loginPrompt()
% Prompt for password
[login password] = basicPrompt();
if isempty(login) || isempty(password)
login = []; password = [];
end
end
function [login password] = basicPrompt()
login = input('Login (Email address): ', 's');
password = input('Password: ', 's');
end
function [login password] = quickLogin(login,password)
disp(['You are currently logged in as ' login '.']);
cont_token = input('Is this you? (y/n - type n to reenter password)','s');
if(isempty(cont_token) || cont_token(1)=='Y'||cont_token(1)=='y')
return;
else
[login password] = loginPrompt();
end
end
function [str] = challengeResponse(email, passwd, challenge)
str = sha1([challenge passwd]);
end
% =============================== SHA-1 ================================
function hash = sha1(str)
% Initialize variables
h0 = uint32(1732584193);
h1 = uint32(4023233417);
h2 = uint32(2562383102);
h3 = uint32(271733878);
h4 = uint32(3285377520);
% Convert to word array
strlen = numel(str);
% Break string into chars and append the bit 1 to the message
mC = [double(str) 128];
mC = [mC zeros(1, 4-mod(numel(mC), 4), 'uint8')];
numB = strlen * 8;
if exist('idivide')
numC = idivide(uint32(numB + 65), 512, 'ceil');
else
numC = ceil(double(numB + 65)/512);
end
numW = numC * 16;
mW = zeros(numW, 1, 'uint32');
idx = 1;
for i = 1:4:strlen + 1
mW(idx) = bitor(bitor(bitor( ...
bitshift(uint32(mC(i)), 24), ...
bitshift(uint32(mC(i+1)), 16)), ...
bitshift(uint32(mC(i+2)), 8)), ...
uint32(mC(i+3)));
idx = idx + 1;
end
% Append length of message
mW(numW - 1) = uint32(bitshift(uint64(numB), -32));
mW(numW) = uint32(bitshift(bitshift(uint64(numB), 32), -32));
% Process the message in successive 512-bit chs
for cId = 1 : double(numC)
cSt = (cId - 1) * 16 + 1;
cEnd = cId * 16;
ch = mW(cSt : cEnd);
% Extend the sixteen 32-bit words into eighty 32-bit words
for j = 17 : 80
ch(j) = ch(j - 3);
ch(j) = bitxor(ch(j), ch(j - 8));
ch(j) = bitxor(ch(j), ch(j - 14));
ch(j) = bitxor(ch(j), ch(j - 16));
ch(j) = bitrotate(ch(j), 1);
end
% Initialize hash value for this ch
a = h0;
b = h1;
c = h2;
d = h3;
e = h4;
% Main loop
for i = 1 : 80
if(i >= 1 && i <= 20)
f = bitor(bitand(b, c), bitand(bitcmp(b), d));
k = uint32(1518500249);
elseif(i >= 21 && i <= 40)
f = bitxor(bitxor(b, c), d);
k = uint32(1859775393);
elseif(i >= 41 && i <= 60)
f = bitor(bitor(bitand(b, c), bitand(b, d)), bitand(c, d));
k = uint32(2400959708);
elseif(i >= 61 && i <= 80)
f = bitxor(bitxor(b, c), d);
k = uint32(3395469782);
end
t = bitrotate(a, 5);
t = bitadd(t, f);
t = bitadd(t, e);
t = bitadd(t, k);
t = bitadd(t, ch(i));
e = d;
d = c;
c = bitrotate(b, 30);
b = a;
a = t;
end
h0 = bitadd(h0, a);
h1 = bitadd(h1, b);
h2 = bitadd(h2, c);
h3 = bitadd(h3, d);
h4 = bitadd(h4, e);
end
hash = reshape(dec2hex(double([h0 h1 h2 h3 h4]), 8)', [1 40]);
hash = lower(hash);
end
function ret = bitadd(iA, iB)
ret = double(iA) + double(iB);
ret = bitset(ret, 33, 0);
ret = uint32(ret);
end
function ret = bitrotate(iA, places)
t = bitshift(iA, places - 32);
ret = bitshift(iA, places);
ret = bitor(ret, t);
end
% =========================== Base64 Encoder ============================
% Thanks to Peter John Acklam
%
function y = base64encode(x, eol)
%BASE64ENCODE Perform base64 encoding on a string.
%
% BASE64ENCODE(STR, EOL) encode the given string STR. EOL is the line ending
% sequence to use; it is optional and defaults to '\n' (ASCII decimal 10).
% The returned encoded string is broken into lines of no more than 76
% characters each, and each line will end with EOL unless it is empty. Let
% EOL be empty if you do not want the encoded string broken into lines.
%
% STR and EOL don't have to be strings (i.e., char arrays). The only
% requirement is that they are vectors containing values in the range 0-255.
%
% This function may be used to encode strings into the Base64 encoding
% specified in RFC 2045 - MIME (Multipurpose Internet Mail Extensions). The
% Base64 encoding is designed to represent arbitrary sequences of octets in a
% form that need not be humanly readable. A 65-character subset
% ([A-Za-z0-9+/=]) of US-ASCII is used, enabling 6 bits to be represented per
% printable character.
%
% Examples
% --------
%
% If you want to encode a large file, you should encode it in chunks that are
% a multiple of 57 bytes. This ensures that the base64 lines line up and
% that you do not end up with padding in the middle. 57 bytes of data fills
% one complete base64 line (76 == 57*4/3):
%
% If ifid and ofid are two file identifiers opened for reading and writing,
% respectively, then you can base64 encode the data with
%
% while ~feof(ifid)
% fwrite(ofid, base64encode(fread(ifid, 60*57)));
% end
%
% or, if you have enough memory,
%
% fwrite(ofid, base64encode(fread(ifid)));
%
% See also BASE64DECODE.
% Author: Peter John Acklam
% Time-stamp: 2004-02-03 21:36:56 +0100
% E-mail: pjacklam@online.no
% URL: http://home.online.no/~pjacklam
if isnumeric(x)
x = num2str(x);
end
% make sure we have the EOL value
if nargin < 2
eol = sprintf('\n');
else
if sum(size(eol) > 1) > 1
error('EOL must be a vector.');
end
if any(eol(:) > 255)
error('EOL can not contain values larger than 255.');
end
end
if sum(size(x) > 1) > 1
error('STR must be a vector.');
end
x = uint8(x);
eol = uint8(eol);
ndbytes = length(x); % number of decoded bytes
nchunks = ceil(ndbytes / 3); % number of chunks/groups
nebytes = 4 * nchunks; % number of encoded bytes
% add padding if necessary, to make the length of x a multiple of 3
if rem(ndbytes, 3)
x(end+1 : 3*nchunks) = 0;
end
x = reshape(x, [3, nchunks]); % reshape the data
y = repmat(uint8(0), 4, nchunks); % for the encoded data
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Split up every 3 bytes into 4 pieces
%
% aaaaaabb bbbbcccc ccdddddd
%
% to form
%
% 00aaaaaa 00bbbbbb 00cccccc 00dddddd
%
y(1,:) = bitshift(x(1,:), -2); % 6 highest bits of x(1,:)
y(2,:) = bitshift(bitand(x(1,:), 3), 4); % 2 lowest bits of x(1,:)
y(2,:) = bitor(y(2,:), bitshift(x(2,:), -4)); % 4 highest bits of x(2,:)
y(3,:) = bitshift(bitand(x(2,:), 15), 2); % 4 lowest bits of x(2,:)
y(3,:) = bitor(y(3,:), bitshift(x(3,:), -6)); % 2 highest bits of x(3,:)
y(4,:) = bitand(x(3,:), 63); % 6 lowest bits of x(3,:)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Now perform the following mapping
%
% 0 - 25 -> A-Z
% 26 - 51 -> a-z
% 52 - 61 -> 0-9
% 62 -> +
% 63 -> /
%
% We could use a mapping vector like
%
% ['A':'Z', 'a':'z', '0':'9', '+/']
%
% but that would require an index vector of class double.
%
z = repmat(uint8(0), size(y));
i = y <= 25; z(i) = 'A' + double(y(i));
i = 26 <= y & y <= 51; z(i) = 'a' - 26 + double(y(i));
i = 52 <= y & y <= 61; z(i) = '0' - 52 + double(y(i));
i = y == 62; z(i) = '+';
i = y == 63; z(i) = '/';
y = z;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Add padding if necessary.
%
npbytes = 3 * nchunks - ndbytes; % number of padding bytes
if npbytes
y(end-npbytes+1 : end) = '='; % '=' is used for padding
end
if isempty(eol)
% reshape to a row vector
y = reshape(y, [1, nebytes]);
else
nlines = ceil(nebytes / 76); % number of lines
neolbytes = length(eol); % number of bytes in eol string
% pad data so it becomes a multiple of 76 elements
y = [y(:) ; zeros(76 * nlines - numel(y), 1)];
y(nebytes + 1 : 76 * nlines) = 0;
y = reshape(y, 76, nlines);
% insert eol strings
eol = eol(:);
y(end + 1 : end + neolbytes, :) = eol(:, ones(1, nlines));
% remove padding, but keep the last eol string
m = nebytes + neolbytes * (nlines - 1);
n = (76+neolbytes)*nlines - neolbytes;
y(m+1 : n) = '';
% extract and reshape to row vector
y = reshape(y, 1, m+neolbytes);
end
% output is a character array
y = char(y);
end

View File

@@ -0,0 +1,20 @@
% submitWeb Creates files from your code and output for web submission.
%
% If the submit function does not work for you, use the web-submission mechanism.
% Call this function to produce a file for the part you wish to submit. Then,
% submit the file to the class servers using the "Web Submission" button on the
% Programming Exercises page on the course website.
%
% You should call this function without arguments (submitWeb), to receive
% an interactive prompt for submission; optionally you can call it with the partID
% if you so wish. Make sure your working directory is set to the directory
% containing the submitWeb.m file and your assignment files.
function submitWeb(partId)
if ~exist('partId', 'var') || isempty(partId)
partId = [];
end
submit(partId, 1);
end

Binary file not shown.

View File

@@ -0,0 +1,220 @@
%% Machine Learning Online Class
% Exercise 5 | Regularized Linear Regression and Bias-Variance
%
% Instructions
% ------------
%
% This file contains code that helps you get started on the
% exercise. You will need to complete the following functions:
%
% linearRegCostFunction.m
% learningCurve.m
% validationCurve.m
%
% For this exercise, you will not need to change any code in this file,
% or any other files other than those mentioned above.
%
%% Initialization
%clear ; close all; clc
%% =========== Part 1: Loading and Visualizing Data =============
% We start the exercise by first loading and visualizing the dataset.
% The following code will load the dataset into your environment and plot
% the data.
%
% Load Training Data
fprintf('Loading and Visualizing Data ...\n')
% Load from ex5data1:
% You will have X, y, Xval, yval, Xtest, ytest in your environment
load ('ex5data1.mat');
% m = Number of examples
m = size(X, 1);
% Plot training data
%plot(X, y, 'rx', 'MarkerSize', 10, 'LineWidth', 1.5);
%xlabel('Change in water level (x)');
%ylabel('Water flowing out of the dam (y)');
%fprintf('Program paused. Press enter to continue.\n');
%pause;
%% =========== Part 2: Regularized Linear Regression Cost =============
% You should now implement the cost function for regularized linear
% regression.
%
theta = [1 ; 1];
J = linearRegCostFunction([ones(m, 1) X], y, theta, 1);
fprintf(['Cost at theta = [1 ; 1]: %f '...
'\n(this value should be about 303.993192)\n'], J);
fprintf('Program paused. Press enter to continue.\n');
pause;
%% =========== Part 3: Regularized Linear Regression Gradient =============
% You should now implement the gradient for regularized linear
% regression.
%
theta = [1 ; 1];
[J, grad] = linearRegCostFunction([ones(m, 1) X], y, theta, 1);
fprintf(['Gradient at theta = [1 ; 1]: [%f; %f] '...
'\n(this value should be about [-15.303016; 598.250744])\n'], ...
grad(1), grad(2));
fprintf('Program paused. Press enter to continue.\n');
pause;
%% =========== Part 4: Train Linear Regression =============
% Once you have implemented the cost and gradient correctly, the
% trainLinearReg function will use your cost function to train
% regularized linear regression.
%
% Write Up Note: The data is non-linear, so this will not give a great
% fit.
%
% Train linear regression with lambda = 0
lambda = 0;
[theta] = trainLinearReg([ones(m, 1) X], y, lambda);
% Plot fit over the data
%plot(X, y, 'rx', 'MarkerSize', 10, 'LineWidth', 1.5);
%xlabel('Change in water level (x)');
%ylabel('Water flowing out of the dam (y)');
%hold on;
%plot(X, [ones(m, 1) X]*theta, '--', 'LineWidth', 2)
%hold off;
fprintf('Program paused. Press enter to continue.\n');
%pause;
%% =========== Part 5: Learning Curve for Linear Regression =============
% Next, you should implement the learningCurve function.
%
% Write Up Note: Since the model is underfitting the data, we expect to
% see a graph with "high bias" -- slide 8 in ML-advice.pdf
%
lambda = 0;
[error_train, error_val] = ...
learningCurve([ones(m, 1) X], y, ...
[ones(size(Xval, 1), 1) Xval], yval, ...
lambda);
%plot(1:m, error_train, 1:m, error_val);
%title('Learning curve for linear regression')
%legend('Train', 'Cross Validation')
%xlabel('Number of training examples')
%ylabel('Error')
%axis([0 13 0 150])
fprintf('# Training Examples\tTrain Error\tCross Validation Error\n');
for i = 1:m
fprintf(' \t%d\t\t%f\t%f\n', i, error_train(i), error_val(i));
end
fprintf('Program paused. Press enter to continue.\n');
pause;
%% =========== Part 6: Feature Mapping for Polynomial Regression =============
% One solution to this is to use polynomial regression. You should now
% complete polyFeatures to map each example into its powers
%
p = 8;
% Map X onto Polynomial Features and Normalize
X_poly = polyFeatures(X, p);
[X_poly, mu, sigma] = featureNormalize(X_poly); % Normalize
X_poly = [ones(m, 1), X_poly]; % Add Ones
% Map X_poly_test and normalize (using mu and sigma)
X_poly_test = polyFeatures(Xtest, p);
X_poly_test = bsxfun(@minus, X_poly_test, mu);
X_poly_test = bsxfun(@rdivide, X_poly_test, sigma);
X_poly_test = [ones(size(X_poly_test, 1), 1), X_poly_test]; % Add Ones
% Map X_poly_val and normalize (using mu and sigma)
X_poly_val = polyFeatures(Xval, p);
X_poly_val = bsxfun(@minus, X_poly_val, mu);
X_poly_val = bsxfun(@rdivide, X_poly_val, sigma);
X_poly_val = [ones(size(X_poly_val, 1), 1), X_poly_val]; % Add Ones
fprintf('Normalized Training Example 1:\n');
fprintf(' %f \n', X_poly(1, :));
fprintf('\nProgram paused. Press enter to continue.\n');
pause;
%% =========== Part 7: Learning Curve for Polynomial Regression =============
% Now, you will get to experiment with polynomial regression with multiple
% values of lambda. The code below runs polynomial regression with
% lambda = 0. You should try running the code with different values of
% lambda to see how the fit and learning curve change.
%
lambda = 0;
[theta] = trainLinearReg(X_poly, y, lambda);
% Plot training data and fit
%figure(1);
%plot(X, y, 'rx', 'MarkerSize', 10, 'LineWidth', 1.5);
%plotFit(min(X), max(X), mu, sigma, theta, p);
%xlabel('Change in water level (x)');
%ylabel('Water flowing out of the dam (y)');
%title (sprintf('Polynomial Regression Fit (lambda = %f)', lambda));
figure(2);
[error_train, error_val] = ...
learningCurve(X_poly, y, X_poly_val, yval, lambda);
%plot(1:m, error_train, 1:m, error_val);
%title(sprintf('Polynomial Regression Learning Curve (lambda = %f)', lambda));
%xlabel('Number of training examples')
%ylabel('Error')
%axis([0 13 0 100])
%legend('Train', 'Cross Validation')
fprintf('Polynomial Regression (lambda = %f)\n\n', lambda);
fprintf('# Training Examples\tTrain Error\tCross Validation Error\n');
for i = 1:m
fprintf(' \t%d\t\t%f\t%f\n', i, error_train(i), error_val(i));
end
fprintf('Program paused. Press enter to continue.\n');
pause;
%% =========== Part 8: Validation for Selecting Lambda =============
% You will now implement validationCurve to test various values of
% lambda on a validation set. You will then use this to select the
% "best" lambda value.
%
[lambda_vec, error_train, error_val] = ...
validationCurve(X_poly, y, X_poly_val, yval);
%close all;
%plot(lambda_vec, error_train, lambda_vec, error_val);
%legend('Train', 'Cross Validation');
%xlabel('lambda');
%ylabel('Error');
fprintf('lambda\t\tTrain Error\tValidation Error\n');
for i = 1:length(lambda_vec)
fprintf(' %f\t%f\t%f\n', ...
lambda_vec(i), error_train(i), error_val(i));
end
fprintf('Program paused. Press enter to continue.\n');
pause;

View File

@@ -0,0 +1,17 @@
function [X_norm, mu, sigma] = featureNormalize(X)
%FEATURENORMALIZE Normalizes the features in X
% FEATURENORMALIZE(X) returns a normalized version of X where
% the mean value of each feature is 0 and the standard deviation
% is 1. This is often a good preprocessing step to do when
% working with learning algorithms.
mu = mean(X);
X_norm = bsxfun(@minus, X, mu);
sigma = std(X_norm);
X_norm = bsxfun(@rdivide, X_norm, sigma);
% ============================================================
end

View File

@@ -0,0 +1,175 @@
function [X, fX, i] = fmincg(f, X, options, P1, P2, P3, P4, P5)
% Minimize a continuous differentialble multivariate function. Starting point
% is given by "X" (D by 1), and the function named in the string "f", must
% return a function value and a vector of partial derivatives. The Polack-
% Ribiere flavour of conjugate gradients is used to compute search directions,
% and a line search using quadratic and cubic polynomial approximations and the
% Wolfe-Powell stopping criteria is used together with the slope ratio method
% for guessing initial step sizes. Additionally a bunch of checks are made to
% make sure that exploration is taking place and that extrapolation will not
% be unboundedly large. The "length" gives the length of the run: if it is
% positive, it gives the maximum number of line searches, if negative its
% absolute gives the maximum allowed number of function evaluations. You can
% (optionally) give "length" a second component, which will indicate the
% reduction in function value to be expected in the first line-search (defaults
% to 1.0). The function returns when either its length is up, or if no further
% progress can be made (ie, we are at a minimum, or so close that due to
% numerical problems, we cannot get any closer). If the function terminates
% within a few iterations, it could be an indication that the function value
% and derivatives are not consistent (ie, there may be a bug in the
% implementation of your "f" function). The function returns the found
% solution "X", a vector of function values "fX" indicating the progress made
% and "i" the number of iterations (line searches or function evaluations,
% depending on the sign of "length") used.
%
% Usage: [X, fX, i] = fmincg(f, X, options, P1, P2, P3, P4, P5)
%
% See also: checkgrad
%
% Copyright (C) 2001 and 2002 by Carl Edward Rasmussen. Date 2002-02-13
%
%
% (C) Copyright 1999, 2000 & 2001, Carl Edward Rasmussen
%
% Permission is granted for anyone to copy, use, or modify these
% programs and accompanying documents for purposes of research or
% education, provided this copyright notice is retained, and note is
% made of any changes that have been made.
%
% These programs and documents are distributed without any warranty,
% express or implied. As the programs were written for research
% purposes only, they have not been tested to the degree that would be
% advisable in any important application. All use of these programs is
% entirely at the user's own risk.
%
% [ml-class] Changes Made:
% 1) Function name and argument specifications
% 2) Output display
%
% Read options
if exist('options', 'var') && ~isempty(options) && isfield(options, 'MaxIter')
length = options.MaxIter;
else
length = 100;
end
RHO = 0.01; % a bunch of constants for line searches
SIG = 0.5; % RHO and SIG are the constants in the Wolfe-Powell conditions
INT = 0.1; % don't reevaluate within 0.1 of the limit of the current bracket
EXT = 3.0; % extrapolate maximum 3 times the current bracket
MAX = 20; % max 20 function evaluations per line search
RATIO = 100; % maximum allowed slope ratio
argstr = ['feval(f, X']; % compose string used to call function
for i = 1:(nargin - 3)
argstr = [argstr, ',P', int2str(i)];
end
argstr = [argstr, ')'];
if max(size(length)) == 2, red=length(2); length=length(1); else red=1; end
S=['Iteration '];
i = 0; % zero the run length counter
ls_failed = 0; % no previous line search has failed
fX = [];
[f1 df1] = eval(argstr); % get function value and gradient
i = i + (length<0); % count epochs?!
s = -df1; % search direction is steepest
d1 = -s'*s; % this is the slope
z1 = red/(1-d1); % initial step is red/(|s|+1)
while i < abs(length) % while not finished
i = i + (length>0); % count iterations?!
X0 = X; f0 = f1; df0 = df1; % make a copy of current values
X = X + z1*s; % begin line search
[f2 df2] = eval(argstr);
i = i + (length<0); % count epochs?!
d2 = df2'*s;
f3 = f1; d3 = d1; z3 = -z1; % initialize point 3 equal to point 1
if length>0, M = MAX; else M = min(MAX, -length-i); end
success = 0; limit = -1; % initialize quanteties
while 1
while ((f2 > f1+z1*RHO*d1) | (d2 > -SIG*d1)) & (M > 0)
limit = z1; % tighten the bracket
if f2 > f1
z2 = z3 - (0.5*d3*z3*z3)/(d3*z3+f2-f3); % quadratic fit
else
A = 6*(f2-f3)/z3+3*(d2+d3); % cubic fit
B = 3*(f3-f2)-z3*(d3+2*d2);
z2 = (sqrt(B*B-A*d2*z3*z3)-B)/A; % numerical error possible - ok!
end
if isnan(z2) | isinf(z2)
z2 = z3/2; % if we had a numerical problem then bisect
end
z2 = max(min(z2, INT*z3),(1-INT)*z3); % don't accept too close to limits
z1 = z1 + z2; % update the step
X = X + z2*s;
[f2 df2] = eval(argstr);
M = M - 1; i = i + (length<0); % count epochs?!
d2 = df2'*s;
z3 = z3-z2; % z3 is now relative to the location of z2
end
if f2 > f1+z1*RHO*d1 | d2 > -SIG*d1
break; % this is a failure
elseif d2 > SIG*d1
success = 1; break; % success
elseif M == 0
break; % failure
end
A = 6*(f2-f3)/z3+3*(d2+d3); % make cubic extrapolation
B = 3*(f3-f2)-z3*(d3+2*d2);
z2 = -d2*z3*z3/(B+sqrt(B*B-A*d2*z3*z3)); % num. error possible - ok!
if ~isreal(z2) | isnan(z2) | isinf(z2) | z2 < 0 % num prob or wrong sign?
if limit < -0.5 % if we have no upper limit
z2 = z1 * (EXT-1); % the extrapolate the maximum amount
else
z2 = (limit-z1)/2; % otherwise bisect
end
elseif (limit > -0.5) & (z2+z1 > limit) % extraplation beyond max?
z2 = (limit-z1)/2; % bisect
elseif (limit < -0.5) & (z2+z1 > z1*EXT) % extrapolation beyond limit
z2 = z1*(EXT-1.0); % set to extrapolation limit
elseif z2 < -z3*INT
z2 = -z3*INT;
elseif (limit > -0.5) & (z2 < (limit-z1)*(1.0-INT)) % too close to limit?
z2 = (limit-z1)*(1.0-INT);
end
f3 = f2; d3 = d2; z3 = -z2; % set point 3 equal to point 2
z1 = z1 + z2; X = X + z2*s; % update current estimates
[f2 df2] = eval(argstr);
M = M - 1; i = i + (length<0); % count epochs?!
d2 = df2'*s;
end % end of line search
if success % if line search succeeded
f1 = f2; fX = [fX' f1]';
fprintf('%s %4i | Cost: %4.6e\r', S, i, f1);
s = (df2'*df2-df1'*df2)/(df1'*df1)*s - df2; % Polack-Ribiere direction
tmp = df1; df1 = df2; df2 = tmp; % swap derivatives
d2 = df1'*s;
if d2 > 0 % new slope must be negative
s = -df1; % otherwise use steepest direction
d2 = -s'*s;
end
z1 = z1 * min(RATIO, d1/(d2-realmin)); % slope ratio but max RATIO
d1 = d2;
ls_failed = 0; % this line search did not fail
else
X = X0; f1 = f0; df1 = df0; % restore point from before failed line search
if ls_failed | i > abs(length) % line search failed twice in a row
break; % or we ran out of time, so we give up
end
tmp = df1; df1 = df2; df2 = tmp; % swap derivatives
s = -df1; % try steepest
d1 = -s'*s;
z1 = 1/(1-d1);
ls_failed = 1; % this line search failed
end
if exist('OCTAVE_VERSION')
fflush(stdout);
end
end
fprintf('\n');

View File

@@ -0,0 +1,67 @@
function [error_train, error_val] = ...
learningCurve(X, y, Xval, yval, lambda)
%LEARNINGCURVE Generates the train and cross validation set errors needed
%to plot a learning curve
% [error_train, error_val] = ...
% LEARNINGCURVE(X, y, Xval, yval, lambda) returns the train and
% cross validation set errors for a learning curve. In particular,
% it returns two vectors of the same length - error_train and
% error_val. Then, error_train(i) contains the training error for
% i examples (and similarly for error_val(i)).
%
% In this function, you will compute the train and test errors for
% dataset sizes from 1 up to m. In practice, when working with larger
% datasets, you might want to do this in larger intervals.
%
% Number of training examples
m = size(X, 1);
% You need to return these values correctly
error_train = zeros(m, 1);
error_val = zeros(m, 1);
% ====================== YOUR CODE HERE ======================
% Instructions: Fill in this function to return training errors in
% error_train and the cross validation errors in error_val.
% i.e., error_train(i) and
% error_val(i) should give you the errors
% obtained after training on i examples.
%
% Note: You should evaluate the training error on the first i training
% examples (i.e., X(1:i, :) and y(1:i)).
%
% For the cross-validation error, you should instead evaluate on
% the _entire_ cross validation set (Xval and yval).
%
% Note: If you are using your cost function (linearRegCostFunction)
% to compute the training and cross validation error, you should
% call the function with the lambda argument set to 0.
% Do note that you will still need to use lambda when running
% the training to obtain the theta parameters.
%
% Hint: You can loop over the examples with the following:
%
% for i = 1:m
% % Compute train/cross validation errors using training examples
% % X(1:i, :) and y(1:i), storing the result in
% % error_train(i) and error_val(i)
% ....
%
% end
%
% ---------------------- Sample Solution ----------------------
mval = size(Xval,1);
for i = 1:m
theta = trainLinearReg(X(1:i,:), y(1:i), lambda);
error_train(i) = sum( (X(1:i,:)*theta - y(1:i)) .^ 2 ) / (2*i);
error_val(i) = sum( (Xval*theta - yval) .^ 2 ) / (2*mval);
end
% -------------------------------------------------------------
% =========================================================================
end

View File

@@ -0,0 +1,33 @@
function [J, grad] = linearRegCostFunction(X, y, theta, lambda)
%LINEARREGCOSTFUNCTION Compute cost and gradient for regularized linear
%regression with multiple variables
% [J, grad] = LINEARREGCOSTFUNCTION(X, y, theta, lambda) computes the
% cost of using theta as the parameter for linear regression to fit the
% data points in X and y. Returns the cost in J and the gradient in grad
% Initialize some useful values
m = length(y); % number of training examples
% You need to return the following variables correctly
J = 0;
grad = zeros(size(theta));
% ====================== YOUR CODE HERE ======================
% Instructions: Compute the cost and gradient of regularized linear
% regression for a particular choice of theta.
%
% You should set J to the cost and grad to the gradient.
%
reg = theta;
reg(1) = 0;
J = sum( (X*theta - y) .^ 2 ) / (2*m) + (lambda/(2*m))*sum(reg.^2);
grad = (X' * (X*theta-y) / m) + (lambda/m) * reg;
% =========================================================================
grad = grad(:);
end

View File

@@ -0,0 +1,28 @@
function plotFit(min_x, max_x, mu, sigma, theta, p)
%PLOTFIT Plots a learned polynomial regression fit over an existing figure.
%Also works with linear regression.
% PLOTFIT(min_x, max_x, mu, sigma, theta, p) plots the learned polynomial
% fit with power p and feature normalization (mu, sigma).
% Hold on to the current figure
hold on;
% We plot a range slightly bigger than the min and max values to get
% an idea of how the fit will vary outside the range of the data points
x = (min_x - 15: 0.05 : max_x + 25)';
% Map the X values
X_poly = polyFeatures(x, p);
X_poly = bsxfun(@minus, X_poly, mu);
X_poly = bsxfun(@rdivide, X_poly, sigma);
% Add ones
X_poly = [ones(size(x, 1), 1) X_poly];
% Plot
plot(x, X_poly * theta, '--', 'LineWidth', 2)
% Hold off to the current figure
hold off
end

View File

@@ -0,0 +1,26 @@
function [X_poly] = polyFeatures(X, p)
%POLYFEATURES Maps X (1D vector) into the p-th power
% [X_poly] = POLYFEATURES(X, p) takes a data matrix X (size m x 1) and
% maps each example into its polynomial features where
% X_poly(i, :) = [X(i) X(i).^2 X(i).^3 ... X(i).^p];
%
% You need to return the following variables correctly.
X_poly = zeros(numel(X), p);
% ====================== YOUR CODE HERE ======================
% Instructions: Given a vector X, return a matrix X_poly where the p-th
% column of X contains the values of X to the p-th power.
%
%
X_poly(:,1) = X;
for i = 2:p
X_poly(:,i) = X_poly(:,i-1).*X;
end
% =========================================================================
end

View File

@@ -0,0 +1,577 @@
function submit(partId, webSubmit)
%SUBMIT Submit your code and output to the ml-class servers
% SUBMIT() will connect to the ml-class server and submit your solution
fprintf('==\n== [ml-class] Submitting Solutions | Programming Exercise %s\n==\n', ...
homework_id());
if ~exist('partId', 'var') || isempty(partId)
partId = promptPart();
end
if ~exist('webSubmit', 'var') || isempty(webSubmit)
webSubmit = 0; % submit directly by default
end
% Check valid partId
partNames = validParts();
if ~isValidPartId(partId)
fprintf('!! Invalid homework part selected.\n');
fprintf('!! Expected an integer from 1 to %d.\n', numel(partNames) + 1);
fprintf('!! Submission Cancelled\n');
return
end
if ~exist('ml_login_data.mat','file')
[login password] = loginPrompt();
save('ml_login_data.mat','login','password');
else
load('ml_login_data.mat');
[login password] = quickLogin(login, password);
save('ml_login_data.mat','login','password');
end
if isempty(login)
fprintf('!! Submission Cancelled\n');
return
end
fprintf('\n== Connecting to ml-class ... ');
if exist('OCTAVE_VERSION')
fflush(stdout);
end
% Setup submit list
if partId == numel(partNames) + 1
submitParts = 1:numel(partNames);
else
submitParts = [partId];
end
for s = 1:numel(submitParts)
thisPartId = submitParts(s);
if (~webSubmit) % submit directly to server
[login, ch, signature, auxstring] = getChallenge(login, thisPartId);
if isempty(login) || isempty(ch) || isempty(signature)
% Some error occured, error string in first return element.
fprintf('\n!! Error: %s\n\n', login);
return
end
% Attempt Submission with Challenge
ch_resp = challengeResponse(login, password, ch);
[result, str] = submitSolution(login, ch_resp, thisPartId, ...
output(thisPartId, auxstring), source(thisPartId), signature);
partName = partNames{thisPartId};
fprintf('\n== [ml-class] Submitted Assignment %s - Part %d - %s\n', ...
homework_id(), thisPartId, partName);
fprintf('== %s\n', strtrim(str));
if exist('OCTAVE_VERSION')
fflush(stdout);
end
else
[result] = submitSolutionWeb(login, thisPartId, output(thisPartId), ...
source(thisPartId));
result = base64encode(result);
fprintf('\nSave as submission file [submit_ex%s_part%d.txt (enter to accept default)]:', ...
homework_id(), thisPartId);
saveAsFile = input('', 's');
if (isempty(saveAsFile))
saveAsFile = sprintf('submit_ex%s_part%d.txt', homework_id(), thisPartId);
end
fid = fopen(saveAsFile, 'w');
if (fid)
fwrite(fid, result);
fclose(fid);
fprintf('\nSaved your solutions to %s.\n\n', saveAsFile);
fprintf(['You can now submit your solutions through the web \n' ...
'form in the programming exercises. Select the corresponding \n' ...
'programming exercise to access the form.\n']);
else
fprintf('Unable to save to %s\n\n', saveAsFile);
fprintf(['You can create a submission file by saving the \n' ...
'following text in a file: (press enter to continue)\n\n']);
pause;
fprintf(result);
end
end
end
end
% ================== CONFIGURABLES FOR EACH HOMEWORK ==================
function id = homework_id()
id = '5';
end
function [partNames] = validParts()
partNames = { 'Regularized Linear Regression Cost Function', ...
'Regularized Linear Regression Gradient', ...
'Learning Curve', ...
'Polynomial Feature Mapping' ...
'Validation Curve' ...
};
end
function srcs = sources()
% Separated by part
srcs = { { 'linearRegCostFunction.m' }, ...
{ 'linearRegCostFunction.m' }, ...
{ 'learningCurve.m' }, ...
{ 'polyFeatures.m' }, ...
{ 'validationCurve.m' } };
end
function out = output(partId, auxstring)
% Random Test Cases
X = [ones(10,1) sin(1:1.5:15)' cos(1:1.5:15)'];
y = sin(1:3:30)';
Xval = [ones(10,1) sin(0:1.5:14)' cos(0:1.5:14)'];
yval = sin(1:10)';
if partId == 1
[J] = linearRegCostFunction(X, y, [0.1 0.2 0.3]', 0.5);
out = sprintf('%0.5f ', J);
elseif partId == 2
[J, grad] = linearRegCostFunction(X, y, [0.1 0.2 0.3]', 0.5);
out = sprintf('%0.5f ', grad);
elseif partId == 3
[error_train, error_val] = ...
learningCurve(X, y, Xval, yval, 1);
out = sprintf('%0.5f ', [error_train(:); error_val(:)]);
elseif partId == 4
[X_poly] = polyFeatures(X(2,:)', 8);
out = sprintf('%0.5f ', X_poly);
elseif partId == 5
[lambda_vec, error_train, error_val] = ...
validationCurve(X, y, Xval, yval);
out = sprintf('%0.5f ', ...
[lambda_vec(:); error_train(:); error_val(:)]);
end
end
% ====================== SERVER CONFIGURATION ===========================
% ***************** REMOVE -staging WHEN YOU DEPLOY *********************
function url = site_url()
url = 'http://class.coursera.org/ml-008';
end
function url = challenge_url()
url = [site_url() '/assignment/challenge'];
end
function url = submit_url()
url = [site_url() '/assignment/submit'];
end
% ========================= CHALLENGE HELPERS =========================
function src = source(partId)
src = '';
src_files = sources();
if partId <= numel(src_files)
flist = src_files{partId};
for i = 1:numel(flist)
fid = fopen(flist{i});
if (fid == -1)
error('Error opening %s (is it missing?)', flist{i});
end
line = fgets(fid);
while ischar(line)
src = [src line];
line = fgets(fid);
end
fclose(fid);
src = [src '||||||||'];
end
end
end
function ret = isValidPartId(partId)
partNames = validParts();
ret = (~isempty(partId)) && (partId >= 1) && (partId <= numel(partNames) + 1);
end
function partId = promptPart()
fprintf('== Select which part(s) to submit:\n');
partNames = validParts();
srcFiles = sources();
for i = 1:numel(partNames)
fprintf('== %d) %s [', i, partNames{i});
fprintf(' %s ', srcFiles{i}{:});
fprintf(']\n');
end
fprintf('== %d) All of the above \n==\nEnter your choice [1-%d]: ', ...
numel(partNames) + 1, numel(partNames) + 1);
selPart = input('', 's');
partId = str2num(selPart);
if ~isValidPartId(partId)
partId = -1;
end
end
function [email,ch,signature,auxstring] = getChallenge(email, part)
str = urlread(challenge_url(), 'post', {'email_address', email, 'assignment_part_sid', [homework_id() '-' num2str(part)], 'response_encoding', 'delim'});
str = strtrim(str);
r = struct;
while(numel(str) > 0)
[f, str] = strtok (str, '|');
[v, str] = strtok (str, '|');
r = setfield(r, f, v);
end
email = getfield(r, 'email_address');
ch = getfield(r, 'challenge_key');
signature = getfield(r, 'state');
auxstring = getfield(r, 'challenge_aux_data');
end
function [result, str] = submitSolutionWeb(email, part, output, source)
result = ['{"assignment_part_sid":"' base64encode([homework_id() '-' num2str(part)], '') '",' ...
'"email_address":"' base64encode(email, '') '",' ...
'"submission":"' base64encode(output, '') '",' ...
'"submission_aux":"' base64encode(source, '') '"' ...
'}'];
str = 'Web-submission';
end
function [result, str] = submitSolution(email, ch_resp, part, output, ...
source, signature)
params = {'assignment_part_sid', [homework_id() '-' num2str(part)], ...
'email_address', email, ...
'submission', base64encode(output, ''), ...
'submission_aux', base64encode(source, ''), ...
'challenge_response', ch_resp, ...
'state', signature};
str = urlread(submit_url(), 'post', params);
% Parse str to read for success / failure
result = 0;
end
% =========================== LOGIN HELPERS ===========================
function [login password] = loginPrompt()
% Prompt for password
[login password] = basicPrompt();
if isempty(login) || isempty(password)
login = []; password = [];
end
end
function [login password] = basicPrompt()
login = input('Login (Email address): ', 's');
password = input('Password: ', 's');
end
function [login password] = quickLogin(login,password)
disp(['You are currently logged in as ' login '.']);
cont_token = input('Is this you? (y/n - type n to reenter password)','s');
if(isempty(cont_token) || cont_token(1)=='Y'||cont_token(1)=='y')
return;
else
[login password] = loginPrompt();
end
end
function [str] = challengeResponse(email, passwd, challenge)
str = sha1([challenge passwd]);
end
% =============================== SHA-1 ================================
function hash = sha1(str)
% Initialize variables
h0 = uint32(1732584193);
h1 = uint32(4023233417);
h2 = uint32(2562383102);
h3 = uint32(271733878);
h4 = uint32(3285377520);
% Convert to word array
strlen = numel(str);
% Break string into chars and append the bit 1 to the message
mC = [double(str) 128];
mC = [mC zeros(1, 4-mod(numel(mC), 4), 'uint8')];
numB = strlen * 8;
if exist('idivide')
numC = idivide(uint32(numB + 65), 512, 'ceil');
else
numC = ceil(double(numB + 65)/512);
end
numW = numC * 16;
mW = zeros(numW, 1, 'uint32');
idx = 1;
for i = 1:4:strlen + 1
mW(idx) = bitor(bitor(bitor( ...
bitshift(uint32(mC(i)), 24), ...
bitshift(uint32(mC(i+1)), 16)), ...
bitshift(uint32(mC(i+2)), 8)), ...
uint32(mC(i+3)));
idx = idx + 1;
end
% Append length of message
mW(numW - 1) = uint32(bitshift(uint64(numB), -32));
mW(numW) = uint32(bitshift(bitshift(uint64(numB), 32), -32));
% Process the message in successive 512-bit chs
for cId = 1 : double(numC)
cSt = (cId - 1) * 16 + 1;
cEnd = cId * 16;
ch = mW(cSt : cEnd);
% Extend the sixteen 32-bit words into eighty 32-bit words
for j = 17 : 80
ch(j) = ch(j - 3);
ch(j) = bitxor(ch(j), ch(j - 8));
ch(j) = bitxor(ch(j), ch(j - 14));
ch(j) = bitxor(ch(j), ch(j - 16));
ch(j) = bitrotate(ch(j), 1);
end
% Initialize hash value for this ch
a = h0;
b = h1;
c = h2;
d = h3;
e = h4;
% Main loop
for i = 1 : 80
if(i >= 1 && i <= 20)
f = bitor(bitand(b, c), bitand(bitcmp(b), d));
k = uint32(1518500249);
elseif(i >= 21 && i <= 40)
f = bitxor(bitxor(b, c), d);
k = uint32(1859775393);
elseif(i >= 41 && i <= 60)
f = bitor(bitor(bitand(b, c), bitand(b, d)), bitand(c, d));
k = uint32(2400959708);
elseif(i >= 61 && i <= 80)
f = bitxor(bitxor(b, c), d);
k = uint32(3395469782);
end
t = bitrotate(a, 5);
t = bitadd(t, f);
t = bitadd(t, e);
t = bitadd(t, k);
t = bitadd(t, ch(i));
e = d;
d = c;
c = bitrotate(b, 30);
b = a;
a = t;
end
h0 = bitadd(h0, a);
h1 = bitadd(h1, b);
h2 = bitadd(h2, c);
h3 = bitadd(h3, d);
h4 = bitadd(h4, e);
end
hash = reshape(dec2hex(double([h0 h1 h2 h3 h4]), 8)', [1 40]);
hash = lower(hash);
end
function ret = bitadd(iA, iB)
ret = double(iA) + double(iB);
ret = bitset(ret, 33, 0);
ret = uint32(ret);
end
function ret = bitrotate(iA, places)
t = bitshift(iA, places - 32);
ret = bitshift(iA, places);
ret = bitor(ret, t);
end
% =========================== Base64 Encoder ============================
% Thanks to Peter John Acklam
%
function y = base64encode(x, eol)
%BASE64ENCODE Perform base64 encoding on a string.
%
% BASE64ENCODE(STR, EOL) encode the given string STR. EOL is the line ending
% sequence to use; it is optional and defaults to '\n' (ASCII decimal 10).
% The returned encoded string is broken into lines of no more than 76
% characters each, and each line will end with EOL unless it is empty. Let
% EOL be empty if you do not want the encoded string broken into lines.
%
% STR and EOL don't have to be strings (i.e., char arrays). The only
% requirement is that they are vectors containing values in the range 0-255.
%
% This function may be used to encode strings into the Base64 encoding
% specified in RFC 2045 - MIME (Multipurpose Internet Mail Extensions). The
% Base64 encoding is designed to represent arbitrary sequences of octets in a
% form that need not be humanly readable. A 65-character subset
% ([A-Za-z0-9+/=]) of US-ASCII is used, enabling 6 bits to be represented per
% printable character.
%
% Examples
% --------
%
% If you want to encode a large file, you should encode it in chunks that are
% a multiple of 57 bytes. This ensures that the base64 lines line up and
% that you do not end up with padding in the middle. 57 bytes of data fills
% one complete base64 line (76 == 57*4/3):
%
% If ifid and ofid are two file identifiers opened for reading and writing,
% respectively, then you can base64 encode the data with
%
% while ~feof(ifid)
% fwrite(ofid, base64encode(fread(ifid, 60*57)));
% end
%
% or, if you have enough memory,
%
% fwrite(ofid, base64encode(fread(ifid)));
%
% See also BASE64DECODE.
% Author: Peter John Acklam
% Time-stamp: 2004-02-03 21:36:56 +0100
% E-mail: pjacklam@online.no
% URL: http://home.online.no/~pjacklam
if isnumeric(x)
x = num2str(x);
end
% make sure we have the EOL value
if nargin < 2
eol = sprintf('\n');
else
if sum(size(eol) > 1) > 1
error('EOL must be a vector.');
end
if any(eol(:) > 255)
error('EOL can not contain values larger than 255.');
end
end
if sum(size(x) > 1) > 1
error('STR must be a vector.');
end
x = uint8(x);
eol = uint8(eol);
ndbytes = length(x); % number of decoded bytes
nchunks = ceil(ndbytes / 3); % number of chunks/groups
nebytes = 4 * nchunks; % number of encoded bytes
% add padding if necessary, to make the length of x a multiple of 3
if rem(ndbytes, 3)
x(end+1 : 3*nchunks) = 0;
end
x = reshape(x, [3, nchunks]); % reshape the data
y = repmat(uint8(0), 4, nchunks); % for the encoded data
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Split up every 3 bytes into 4 pieces
%
% aaaaaabb bbbbcccc ccdddddd
%
% to form
%
% 00aaaaaa 00bbbbbb 00cccccc 00dddddd
%
y(1,:) = bitshift(x(1,:), -2); % 6 highest bits of x(1,:)
y(2,:) = bitshift(bitand(x(1,:), 3), 4); % 2 lowest bits of x(1,:)
y(2,:) = bitor(y(2,:), bitshift(x(2,:), -4)); % 4 highest bits of x(2,:)
y(3,:) = bitshift(bitand(x(2,:), 15), 2); % 4 lowest bits of x(2,:)
y(3,:) = bitor(y(3,:), bitshift(x(3,:), -6)); % 2 highest bits of x(3,:)
y(4,:) = bitand(x(3,:), 63); % 6 lowest bits of x(3,:)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Now perform the following mapping
%
% 0 - 25 -> A-Z
% 26 - 51 -> a-z
% 52 - 61 -> 0-9
% 62 -> +
% 63 -> /
%
% We could use a mapping vector like
%
% ['A':'Z', 'a':'z', '0':'9', '+/']
%
% but that would require an index vector of class double.
%
z = repmat(uint8(0), size(y));
i = y <= 25; z(i) = 'A' + double(y(i));
i = 26 <= y & y <= 51; z(i) = 'a' - 26 + double(y(i));
i = 52 <= y & y <= 61; z(i) = '0' - 52 + double(y(i));
i = y == 62; z(i) = '+';
i = y == 63; z(i) = '/';
y = z;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Add padding if necessary.
%
npbytes = 3 * nchunks - ndbytes; % number of padding bytes
if npbytes
y(end-npbytes+1 : end) = '='; % '=' is used for padding
end
if isempty(eol)
% reshape to a row vector
y = reshape(y, [1, nebytes]);
else
nlines = ceil(nebytes / 76); % number of lines
neolbytes = length(eol); % number of bytes in eol string
% pad data so it becomes a multiple of 76 elements
y = [y(:) ; zeros(76 * nlines - numel(y), 1)];
y(nebytes + 1 : 76 * nlines) = 0;
y = reshape(y, 76, nlines);
% insert eol strings
eol = eol(:);
y(end + 1 : end + neolbytes, :) = eol(:, ones(1, nlines));
% remove padding, but keep the last eol string
m = nebytes + neolbytes * (nlines - 1);
n = (76+neolbytes)*nlines - neolbytes;
y(m+1 : n) = '';
% extract and reshape to row vector
y = reshape(y, 1, m+neolbytes);
end
% output is a character array
y = char(y);
end

View File

@@ -0,0 +1,20 @@
% submitWeb Creates files from your code and output for web submission.
%
% If the submit function does not work for you, use the web-submission mechanism.
% Call this function to produce a file for the part you wish to submit. Then,
% submit the file to the class servers using the "Web Submission" button on the
% Programming Exercises page on the course website.
%
% You should call this function without arguments (submitWeb), to receive
% an interactive prompt for submission; optionally you can call it with the partID
% if you so wish. Make sure your working directory is set to the directory
% containing the submitWeb.m file and your assignment files.
function submitWeb(partId)
if ~exist('partId', 'var') || isempty(partId)
partId = [];
end
submit(partId, 1);
end

View File

@@ -0,0 +1,21 @@
function [theta] = trainLinearReg(X, y, lambda)
%TRAINLINEARREG Trains linear regression given a dataset (X, y) and a
%regularization parameter lambda
% [theta] = TRAINLINEARREG (X, y, lambda) trains linear regression using
% the dataset (X, y) and regularization parameter lambda. Returns the
% trained parameters theta.
%
% Initialize Theta
initial_theta = zeros(size(X, 2), 1);
% Create "short hand" for the cost function to be minimized
costFunction = @(t) linearRegCostFunction(X, y, t, lambda);
% Now, costFunction is a function that takes in only one argument
options = optimset('MaxIter', 200, 'GradObj', 'on');
% Minimize using fmincg
theta = fmincg(costFunction, initial_theta, options);
end

View File

@@ -0,0 +1,52 @@
function [lambda_vec, error_train, error_val] = ...
validationCurve(X, y, Xval, yval)
%VALIDATIONCURVE Generate the train and validation errors needed to
%plot a validation curve that we can use to select lambda
% [lambda_vec, error_train, error_val] = ...
% VALIDATIONCURVE(X, y, Xval, yval) returns the train
% and validation errors (in error_train, error_val)
% for different values of lambda. You are given the training set (X,
% y) and validation set (Xval, yval).
%
% Selected values of lambda (you should not change this)
lambda_vec = [0 0.001 0.003 0.01 0.03 0.1 0.3 1 3 10]';
% You need to return these variables correctly.
error_train = zeros(length(lambda_vec), 1);
error_val = zeros(length(lambda_vec), 1);
% ====================== YOUR CODE HERE ======================
% Instructions: Fill in this function to return training errors in
% error_train and the validation errors in error_val. The
% vector lambda_vec contains the different lambda parameters
% to use for each calculation of the errors, i.e,
% error_train(i), and error_val(i) should give
% you the errors obtained after training with
% lambda = lambda_vec(i)
%
% Note: You can loop over lambda_vec with the following:
%
% for i = 1:length(lambda_vec)
% lambda = lambda_vec(i);
% % Compute train / val errors when training linear
% % regression with regularization parameter lambda
% % You should store the result in error_train(i)
% % and error_val(i)
% ....
%
% end
%
%
m = size(X,1);
mval = size(Xval,1);
for i = 1:length(lambda_vec)
theta = trainLinearReg(X, y, lambda_vec(i));
error_train(i) = sum( (X*theta - y) .^ 2 ) / (2*m);
error_val(i) = sum( (Xval*theta - yval) .^ 2 ) / (2*mval);
end
% =========================================================================
end

Binary file not shown.

View File

@@ -0,0 +1,45 @@
function [C, sigma] = dataset3Params(X, y, Xval, yval)
%EX6PARAMS returns your choice of C and sigma for Part 3 of the exercise
%where you select the optimal (C, sigma) learning parameters to use for SVM
%with RBF kernel
% [C, sigma] = EX6PARAMS(X, y, Xval, yval) returns your choice of C and
% sigma. You should complete this function to return the optimal C and
% sigma based on a cross-validation set.
%
% You need to return the following variables correctly.
C = 1;
sigma = 0.3;
% ====================== YOUR CODE HERE ======================
% Instructions: Fill in this function to return the optimal C and sigma
% learning parameters found using the cross validation set.
% You can use svmPredict to predict the labels on the cross
% validation set. For example,
% predictions = svmPredict(model, Xval);
% will return the predictions on the cross validation set.
%
% Note: You can compute the prediction error using
% mean(double(predictions ~= yval))
%
merr = 1000000000;
for i=-4:3
for j=-4:3
c = exp(i); % this will generate sequance close to
s = exp(j); % 0.01 0.03 0.1 0.3 1 3 10 30
model= svmTrain(X, y, c, @(x1, x2) gaussianKernel(x1, x2, s));
predictions = svmPredict(model, Xval);
err = mean(double(predictions ~= yval));
if err < merr
C = c;
sigma = s;
merr = err;
end
end
end
% =========================================================================
end

View File

@@ -0,0 +1,58 @@
function x = emailFeatures(word_indices)
%EMAILFEATURES takes in a word_indices vector and produces a feature vector
%from the word indices
% x = EMAILFEATURES(word_indices) takes in a word_indices vector and
% produces a feature vector from the word indices.
% Total number of words in the dictionary
n = 1899;
% You need to return the following variables correctly.
x = zeros(n, 1);
% ====================== YOUR CODE HERE ======================
% Instructions: Fill in this function to return a feature vector for the
% given email (word_indices). To help make it easier to
% process the emails, we have have already pre-processed each
% email and converted each word in the email into an index in
% a fixed dictionary (of 1899 words). The variable
% word_indices contains the list of indices of the words
% which occur in one email.
%
% Concretely, if an email has the text:
%
% The quick brown fox jumped over the lazy dog.
%
% Then, the word_indices vector for this text might look
% like:
%
% 60 100 33 44 10 53 60 58 5
%
% where, we have mapped each word onto a number, for example:
%
% the -- 60
% quick -- 100
% ...
%
% (note: the above numbers are just an example and are not the
% actual mappings).
%
% Your task is take one such word_indices vector and construct
% a binary feature vector that indicates whether a particular
% word occurs in the email. That is, x(i) = 1 when word i
% is present in the email. Concretely, if the word 'the' (say,
% index 60) appears in the email, then x(60) = 1. The feature
% vector should look like:
%
% x = [ 0 0 0 0 1 0 0 0 ... 0 0 0 0 1 ... 0 0 0 1 0 ..];
%
%
for i=1:length(word_indices)
x(word_indices(i)) |= 1;
end
% =========================================================================
end

View File

@@ -0,0 +1,10 @@
> Anyone knows how much it costs to host a web portal ?
>
Well, it depends on how many visitors you're expecting.
This can be anywhere from less than 10 bucks a month to a couple of $100.
You should checkout http://www.rackspace.com/ or perhaps Amazon EC2
if youre running something big..
To unsubscribe yourself from this mailing list, send an email to:
groupname-unsubscribe@egroups.com

View File

@@ -0,0 +1,34 @@
Folks,
my first time posting - have a bit of Unix experience, but am new to Linux.
Just got a new PC at home - Dell box with Windows XP. Added a second hard disk
for Linux. Partitioned the disk and have installed Suse 7.2 from CD, which went
fine except it didn't pick up my monitor.
I have a Dell branded E151FPp 15" LCD flat panel monitor and a nVidia GeForce4
Ti4200 video card, both of which are probably too new to feature in Suse's default
set. I downloaded a driver from the nVidia website and installed it using RPM.
Then I ran Sax2 (as was recommended in some postings I found on the net), but
it still doesn't feature my video card in the available list. What next?
Another problem. I have a Dell branded keyboard and if I hit Caps-Lock twice,
the whole machine crashes (in Linux, not Windows) - even the on/off switch is
inactive, leaving me to reach for the power cable instead.
If anyone can help me in any way with these probs., I'd be really grateful -
I've searched the 'net but have run out of ideas.
Or should I be going for a different version of Linux such as RedHat? Opinions
welcome.
Thanks a lot,
Peter
--
Irish Linux Users' Group: ilug@linux.ie
http://www.linux.ie/mailman/listinfo/ilug for (un)subscription information.
List maintainer: listmaster@linux.ie

View File

@@ -0,0 +1,150 @@
%% Machine Learning Online Class
% Exercise 6 | Support Vector Machines
%
% Instructions
% ------------
%
% This file contains code that helps you get started on the
% exercise. You will need to complete the following functions:
%
% gaussianKernel.m
% dataset3Params.m
% processEmail.m
% emailFeatures.m
%
% For this exercise, you will not need to change any code in this file,
% or any other files other than those mentioned above.
%
%% Initialization
clear ; close all; clc
%% =============== Part 1: Loading and Visualizing Data ================
% We start the exercise by first loading and visualizing the dataset.
% The following code will load the dataset into your environment and plot
% the data.
%
fprintf('Loading and Visualizing Data ...\n')
% Load from ex6data1:
% You will have X, y in your environment
load('ex6data1.mat');
% Plot training data
plotData(X, y);
fprintf('Program paused. Press enter to continue.\n');
pause;
%% ==================== Part 2: Training Linear SVM ====================
% The following code will train a linear SVM on the dataset and plot the
% decision boundary learned.
%
% Load from ex6data1:
% You will have X, y in your environment
load('ex6data1.mat');
fprintf('\nTraining Linear SVM ...\n')
% You should try to change the C value below and see how the decision
% boundary varies (e.g., try C = 1000)
C = 1000;
model = svmTrain(X, y, C, @linearKernel, 1e-3, 20);
visualizeBoundaryLinear(X, y, model);
fprintf('Program paused. Press enter to continue.\n');
pause;
%% =============== Part 3: Implementing Gaussian Kernel ===============
% You will now implement the Gaussian kernel to use
% with the SVM. You should complete the code in gaussianKernel.m
%
fprintf('\nEvaluating the Gaussian Kernel ...\n')
x1 = [1 2 1]; x2 = [0 4 -1]; sigma = 2;
sim = gaussianKernel(x1, x2, sigma);
fprintf(['Gaussian Kernel between x1 = [1; 2; 1], x2 = [0; 4; -1], sigma = 0.5 :' ...
'\n\t%f\n(this value should be about 0.324652)\n'], sim);
fprintf('Program paused. Press enter to continue.\n');
pause;
%% =============== Part 4: Visualizing Dataset 2 ================
% The following code will load the next dataset into your environment and
% plot the data.
%
fprintf('Loading and Visualizing Data ...\n')
% Load from ex6data2:
% You will have X, y in your environment
load('ex6data2.mat');
% Plot training data
plotData(X, y);
fprintf('Program paused. Press enter to continue.\n');
pause;
%% ========== Part 5: Training SVM with RBF Kernel (Dataset 2) ==========
% After you have implemented the kernel, we can now use it to train the
% SVM classifier.
%
fprintf('\nTraining SVM with RBF Kernel (this may take 1 to 2 minutes) ...\n');
% Load from ex6data2:
% You will have X, y in your environment
load('ex6data2.mat');
% SVM Parameters
C = 1; sigma = 0.1;
% We set the tolerance and max_passes lower here so that the code will run
% faster. However, in practice, you will want to run the training to
% convergence.
model= svmTrain(X, y, C, @(x1, x2) gaussianKernel(x1, x2, sigma));
visualizeBoundary(X, y, model);
fprintf('Program paused. Press enter to continue.\n');
pause;
%% =============== Part 6: Visualizing Dataset 3 ================
% The following code will load the next dataset into your environment and
% plot the data.
%
fprintf('Loading and Visualizing Data ...\n')
% Load from ex6data3:
% You will have X, y in your environment
load('ex6data3.mat');
% Plot training data
plotData(X, y);
fprintf('Program paused. Press enter to continue.\n');
pause;
%% ========== Part 7: Training SVM with RBF Kernel (Dataset 3) ==========
% This is a different dataset that you can use to experiment with. Try
% different values of C and sigma here.
%
% Load from ex6data3:
% You will have X, y in your environment
load('ex6data3.mat');
% Try different SVM Parameters here
[C, sigma] = dataset3Params(X, y, Xval, yval);
% Train the SVM
model= svmTrain(X, y, C, @(x1, x2) gaussianKernel(x1, x2, sigma));
visualizeBoundary(X, y, model);
fprintf('Program paused. Press enter to continue.\n');
pause;

View File

@@ -0,0 +1,138 @@
%% Machine Learning Online Class
% Exercise 6 | Spam Classification with SVMs
%
% Instructions
% ------------
%
% This file contains code that helps you get started on the
% exercise. You will need to complete the following functions:
%
% gaussianKernel.m
% dataset3Params.m
% processEmail.m
% emailFeatures.m
%
% For this exercise, you will not need to change any code in this file,
% or any other files other than those mentioned above.
%
%% Initialization
clear ; close all; clc
%% ==================== Part 1: Email Preprocessing ====================
% To use an SVM to classify emails into Spam v.s. Non-Spam, you first need
% to convert each email into a vector of features. In this part, you will
% implement the preprocessing steps for each email. You should
% complete the code in processEmail.m to produce a word indices vector
% for a given email.
fprintf('\nPreprocessing sample email (emailSample1.txt)\n');
% Extract Features
file_contents = readFile('emailSample1.txt');
word_indices = processEmail(file_contents);
% Print Stats
fprintf('Word Indices: \n');
fprintf(' %d', word_indices);
fprintf('\n\n');
fprintf('Program paused. Press enter to continue.\n');
pause;
%% ==================== Part 2: Feature Extraction ====================
% Now, you will convert each email into a vector of features in R^n.
% You should complete the code in emailFeatures.m to produce a feature
% vector for a given email.
fprintf('\nExtracting features from sample email (emailSample1.txt)\n');
% Extract Features
file_contents = readFile('emailSample1.txt');
word_indices = processEmail(file_contents);
features = emailFeatures(word_indices);
% Print Stats
fprintf('Length of feature vector: %d\n', length(features));
fprintf('Number of non-zero entries: %d\n', sum(features > 0));
fprintf('Program paused. Press enter to continue.\n');
pause;
%% =========== Part 3: Train Linear SVM for Spam Classification ========
% In this section, you will train a linear classifier to determine if an
% email is Spam or Not-Spam.
% Load the Spam Email dataset
% You will have X, y in your environment
load('spamTrain.mat');
fprintf('\nTraining Linear SVM (Spam Classification)\n')
fprintf('(this may take 1 to 2 minutes) ...\n')
C = 0.1;
model = svmTrain(X, y, C, @linearKernel);
p = svmPredict(model, X);
fprintf('Training Accuracy: %f\n', mean(double(p == y)) * 100);
%% =================== Part 4: Test Spam Classification ================
% After training the classifier, we can evaluate it on a test set. We have
% included a test set in spamTest.mat
% Load the test dataset
% You will have Xtest, ytest in your environment
load('spamTest.mat');
fprintf('\nEvaluating the trained Linear SVM on a test set ...\n')
p = svmPredict(model, Xtest);
fprintf('Test Accuracy: %f\n', mean(double(p == ytest)) * 100);
pause;
%% ================= Part 5: Top Predictors of Spam ====================
% Since the model we are training is a linear SVM, we can inspect the
% weights learned by the model to understand better how it is determining
% whether an email is spam or not. The following code finds the words with
% the highest weights in the classifier. Informally, the classifier
% 'thinks' that these words are the most likely indicators of spam.
%
% Sort the weights and obtin the vocabulary list
[weight, idx] = sort(model.w, 'descend');
vocabList = getVocabList();
fprintf('\nTop predictors of spam: \n');
for i = 1:15
fprintf(' %-15s (%f) \n', vocabList{idx(i)}, weight(i));
end
fprintf('\n\n');
fprintf('\nProgram paused. Press enter to continue.\n');
pause;
%% =================== Part 6: Try Your Own Emails =====================
% Now that you've trained the spam classifier, you can use it on your own
% emails! In the starter code, we have included spamSample1.txt,
% spamSample2.txt, emailSample1.txt and emailSample2.txt as examples.
% The following code reads in one of these emails and then uses your
% learned SVM classifier to determine whether the email is Spam or
% Not Spam
% Set the file to be read in (change this to spamSample2.txt,
% emailSample1.txt or emailSample2.txt to see different predictions on
% different emails types). Try your own emails as well!
filename = 'spamSample1.txt';
% Read and predict
file_contents = readFile(filename);
word_indices = processEmail(file_contents);
x = emailFeatures(word_indices);
p = svmPredict(model, x);
fprintf('\nProcessed %s\n\nSpam Classification: %d\n', filename, p);
fprintf('(1 indicates spam, 0 indicates not spam)\n\n');

View File

@@ -0,0 +1,27 @@
function sim = gaussianKernel(x1, x2, sigma)
%RBFKERNEL returns a radial basis function kernel between x1 and x2
% sim = gaussianKernel(x1, x2) returns a gaussian kernel between x1 and x2
% and returns the value in sim
% Ensure that x1 and x2 are column vectors
x1 = x1(:); x2 = x2(:);
% You need to return the following variables correctly.
sim = 0;
% ====================== YOUR CODE HERE ======================
% Instructions: Fill in this function to return the similarity between x1
% and x2 computed using a Gaussian kernel with bandwidth
% sigma
%
%
diff = (x1-x2);
sim = exp( - diff' * diff / ( 2 * sigma^2))
% =============================================================
end

View File

@@ -0,0 +1,25 @@
function vocabList = getVocabList()
%GETVOCABLIST reads the fixed vocabulary list in vocab.txt and returns a
%cell array of the words
% vocabList = GETVOCABLIST() reads the fixed vocabulary list in vocab.txt
% and returns a cell array of the words in vocabList.
%% Read the fixed vocabulary list
fid = fopen('vocab.txt');
% Store all dictionary words in cell array vocab{}
n = 1899; % Total number of words in the dictionary
% For ease of implementation, we use a struct to map the strings => integers
% In practice, you'll want to use some form of hashmap
vocabList = cell(n, 1);
for i = 1:n
% Word Index (can ignore since it will be = i)
fscanf(fid, '%d', 1);
% Actual Word
vocabList{i} = fscanf(fid, '%s', 1);
end
fclose(fid);
end

View File

@@ -0,0 +1,12 @@
function sim = linearKernel(x1, x2)
%LINEARKERNEL returns a linear kernel between x1 and x2
% sim = linearKernel(x1, x2) returns a linear kernel between x1 and x2
% and returns the value in sim
% Ensure that x1 and x2 are column vectors
x1 = x1(:); x2 = x2(:);
% Compute the kernel
sim = x1' * x2; % dot product
end

View File

@@ -0,0 +1,17 @@
function plotData(X, y)
%PLOTDATA Plots the data points X and y into a new figure
% PLOTDATA(x,y) plots the data points with + for the positive examples
% and o for the negative examples. X is assumed to be a Mx2 matrix.
%
% Note: This was slightly modified such that it expects y = 1 or y = 0
% Find Indices of Positive and Negative Examples
pos = find(y == 1); neg = find(y == 0);
% Plot Examples
plot(X(pos, 1), X(pos, 2), 'k+','LineWidth', 1, 'MarkerSize', 7)
hold on;
plot(X(neg, 1), X(neg, 2), 'ko', 'MarkerFaceColor', 'y', 'MarkerSize', 7)
hold off;
end

View File

@@ -0,0 +1,385 @@
function stem = porterStemmer(inString)
% Applies the Porter Stemming algorithm as presented in the following
% paper:
% Porter, 1980, An algorithm for suffix stripping, Program, Vol. 14,
% no. 3, pp 130-137
% Original code modeled after the C version provided at:
% http://www.tartarus.org/~martin/PorterStemmer/c.txt
% The main part of the stemming algorithm starts here. b is an array of
% characters, holding the word to be stemmed. The letters are in b[k0],
% b[k0+1] ending at b[k]. In fact k0 = 1 in this demo program (since
% matlab begins indexing by 1 instead of 0). k is readjusted downwards as
% the stemming progresses. Zero termination is not in fact used in the
% algorithm.
% To call this function, use the string to be stemmed as the input
% argument. This function returns the stemmed word as a string.
% Lower-case string
inString = lower(inString);
global j;
b = inString;
k = length(b);
k0 = 1;
j = k;
% With this if statement, strings of length 1 or 2 don't go through the
% stemming process. Remove this conditional to match the published
% algorithm.
stem = b;
if k > 2
% Output displays per step are commented out.
%disp(sprintf('Word to stem: %s', b));
x = step1ab(b, k, k0);
%disp(sprintf('Steps 1A and B yield: %s', x{1}));
x = step1c(x{1}, x{2}, k0);
%disp(sprintf('Step 1C yields: %s', x{1}));
x = step2(x{1}, x{2}, k0);
%disp(sprintf('Step 2 yields: %s', x{1}));
x = step3(x{1}, x{2}, k0);
%disp(sprintf('Step 3 yields: %s', x{1}));
x = step4(x{1}, x{2}, k0);
%disp(sprintf('Step 4 yields: %s', x{1}));
x = step5(x{1}, x{2}, k0);
%disp(sprintf('Step 5 yields: %s', x{1}));
stem = x{1};
end
% cons(j) is TRUE <=> b[j] is a consonant.
function c = cons(i, b, k0)
c = true;
switch(b(i))
case {'a', 'e', 'i', 'o', 'u'}
c = false;
case 'y'
if i == k0
c = true;
else
c = ~cons(i - 1, b, k0);
end
end
% mseq() measures the number of consonant sequences between k0 and j. If
% c is a consonant sequence and v a vowel sequence, and <..> indicates
% arbitrary presence,
% <c><v> gives 0
% <c>vc<v> gives 1
% <c>vcvc<v> gives 2
% <c>vcvcvc<v> gives 3
% ....
function n = measure(b, k0)
global j;
n = 0;
i = k0;
while true
if i > j
return
end
if ~cons(i, b, k0)
break;
end
i = i + 1;
end
i = i + 1;
while true
while true
if i > j
return
end
if cons(i, b, k0)
break;
end
i = i + 1;
end
i = i + 1;
n = n + 1;
while true
if i > j
return
end
if ~cons(i, b, k0)
break;
end
i = i + 1;
end
i = i + 1;
end
% vowelinstem() is TRUE <=> k0,...j contains a vowel
function vis = vowelinstem(b, k0)
global j;
for i = k0:j,
if ~cons(i, b, k0)
vis = true;
return
end
end
vis = false;
%doublec(i) is TRUE <=> i,(i-1) contain a double consonant.
function dc = doublec(i, b, k0)
if i < k0+1
dc = false;
return
end
if b(i) ~= b(i-1)
dc = false;
return
end
dc = cons(i, b, k0);
% cvc(j) is TRUE <=> j-2,j-1,j has the form consonant - vowel - consonant
% and also if the second c is not w,x or y. this is used when trying to
% restore an e at the end of a short word. e.g.
%
% cav(e), lov(e), hop(e), crim(e), but
% snow, box, tray.
function c1 = cvc(i, b, k0)
if ((i < (k0+2)) || ~cons(i, b, k0) || cons(i-1, b, k0) || ~cons(i-2, b, k0))
c1 = false;
else
if (b(i) == 'w' || b(i) == 'x' || b(i) == 'y')
c1 = false;
return
end
c1 = true;
end
% ends(s) is TRUE <=> k0,...k ends with the string s.
function s = ends(str, b, k)
global j;
if (str(length(str)) ~= b(k))
s = false;
return
end % tiny speed-up
if (length(str) > k)
s = false;
return
end
if strcmp(b(k-length(str)+1:k), str)
s = true;
j = k - length(str);
return
else
s = false;
end
% setto(s) sets (j+1),...k to the characters in the string s, readjusting
% k accordingly.
function so = setto(s, b, k)
global j;
for i = j+1:(j+length(s))
b(i) = s(i-j);
end
if k > j+length(s)
b((j+length(s)+1):k) = '';
end
k = length(b);
so = {b, k};
% rs(s) is used further down.
% [Note: possible null/value for r if rs is called]
function r = rs(str, b, k, k0)
r = {b, k};
if measure(b, k0) > 0
r = setto(str, b, k);
end
% step1ab() gets rid of plurals and -ed or -ing. e.g.
% caresses -> caress
% ponies -> poni
% ties -> ti
% caress -> caress
% cats -> cat
% feed -> feed
% agreed -> agree
% disabled -> disable
% matting -> mat
% mating -> mate
% meeting -> meet
% milling -> mill
% messing -> mess
% meetings -> meet
function s1ab = step1ab(b, k, k0)
global j;
if b(k) == 's'
if ends('sses', b, k)
k = k-2;
elseif ends('ies', b, k)
retVal = setto('i', b, k);
b = retVal{1};
k = retVal{2};
elseif (b(k-1) ~= 's')
k = k-1;
end
end
if ends('eed', b, k)
if measure(b, k0) > 0;
k = k-1;
end
elseif (ends('ed', b, k) || ends('ing', b, k)) && vowelinstem(b, k0)
k = j;
retVal = {b, k};
if ends('at', b, k)
retVal = setto('ate', b(k0:k), k);
elseif ends('bl', b, k)
retVal = setto('ble', b(k0:k), k);
elseif ends('iz', b, k)
retVal = setto('ize', b(k0:k), k);
elseif doublec(k, b, k0)
retVal = {b, k-1};
if b(retVal{2}) == 'l' || b(retVal{2}) == 's' || ...
b(retVal{2}) == 'z'
retVal = {retVal{1}, retVal{2}+1};
end
elseif measure(b, k0) == 1 && cvc(k, b, k0)
retVal = setto('e', b(k0:k), k);
end
k = retVal{2};
b = retVal{1}(k0:k);
end
j = k;
s1ab = {b(k0:k), k};
% step1c() turns terminal y to i when there is another vowel in the stem.
function s1c = step1c(b, k, k0)
global j;
if ends('y', b, k) && vowelinstem(b, k0)
b(k) = 'i';
end
j = k;
s1c = {b, k};
% step2() maps double suffices to single ones. so -ization ( = -ize plus
% -ation) maps to -ize etc. note that the string before the suffix must give
% m() > 0.
function s2 = step2(b, k, k0)
global j;
s2 = {b, k};
switch b(k-1)
case {'a'}
if ends('ational', b, k) s2 = rs('ate', b, k, k0);
elseif ends('tional', b, k) s2 = rs('tion', b, k, k0); end;
case {'c'}
if ends('enci', b, k) s2 = rs('ence', b, k, k0);
elseif ends('anci', b, k) s2 = rs('ance', b, k, k0); end;
case {'e'}
if ends('izer', b, k) s2 = rs('ize', b, k, k0); end;
case {'l'}
if ends('bli', b, k) s2 = rs('ble', b, k, k0);
elseif ends('alli', b, k) s2 = rs('al', b, k, k0);
elseif ends('entli', b, k) s2 = rs('ent', b, k, k0);
elseif ends('eli', b, k) s2 = rs('e', b, k, k0);
elseif ends('ousli', b, k) s2 = rs('ous', b, k, k0); end;
case {'o'}
if ends('ization', b, k) s2 = rs('ize', b, k, k0);
elseif ends('ation', b, k) s2 = rs('ate', b, k, k0);
elseif ends('ator', b, k) s2 = rs('ate', b, k, k0); end;
case {'s'}
if ends('alism', b, k) s2 = rs('al', b, k, k0);
elseif ends('iveness', b, k) s2 = rs('ive', b, k, k0);
elseif ends('fulness', b, k) s2 = rs('ful', b, k, k0);
elseif ends('ousness', b, k) s2 = rs('ous', b, k, k0); end;
case {'t'}
if ends('aliti', b, k) s2 = rs('al', b, k, k0);
elseif ends('iviti', b, k) s2 = rs('ive', b, k, k0);
elseif ends('biliti', b, k) s2 = rs('ble', b, k, k0); end;
case {'g'}
if ends('logi', b, k) s2 = rs('log', b, k, k0); end;
end
j = s2{2};
% step3() deals with -ic-, -full, -ness etc. similar strategy to step2.
function s3 = step3(b, k, k0)
global j;
s3 = {b, k};
switch b(k)
case {'e'}
if ends('icate', b, k) s3 = rs('ic', b, k, k0);
elseif ends('ative', b, k) s3 = rs('', b, k, k0);
elseif ends('alize', b, k) s3 = rs('al', b, k, k0); end;
case {'i'}
if ends('iciti', b, k) s3 = rs('ic', b, k, k0); end;
case {'l'}
if ends('ical', b, k) s3 = rs('ic', b, k, k0);
elseif ends('ful', b, k) s3 = rs('', b, k, k0); end;
case {'s'}
if ends('ness', b, k) s3 = rs('', b, k, k0); end;
end
j = s3{2};
% step4() takes off -ant, -ence etc., in context <c>vcvc<v>.
function s4 = step4(b, k, k0)
global j;
switch b(k-1)
case {'a'}
if ends('al', b, k) end;
case {'c'}
if ends('ance', b, k)
elseif ends('ence', b, k) end;
case {'e'}
if ends('er', b, k) end;
case {'i'}
if ends('ic', b, k) end;
case {'l'}
if ends('able', b, k)
elseif ends('ible', b, k) end;
case {'n'}
if ends('ant', b, k)
elseif ends('ement', b, k)
elseif ends('ment', b, k)
elseif ends('ent', b, k) end;
case {'o'}
if ends('ion', b, k)
if j == 0
elseif ~(strcmp(b(j),'s') || strcmp(b(j),'t'))
j = k;
end
elseif ends('ou', b, k) end;
case {'s'}
if ends('ism', b, k) end;
case {'t'}
if ends('ate', b, k)
elseif ends('iti', b, k) end;
case {'u'}
if ends('ous', b, k) end;
case {'v'}
if ends('ive', b, k) end;
case {'z'}
if ends('ize', b, k) end;
end
if measure(b, k0) > 1
s4 = {b(k0:j), j};
else
s4 = {b(k0:k), k};
end
% step5() removes a final -e if m() > 1, and changes -ll to -l if m() > 1.
function s5 = step5(b, k, k0)
global j;
j = k;
if b(k) == 'e'
a = measure(b, k0);
if (a > 1) || ((a == 1) && ~cvc(k-1, b, k0))
k = k-1;
end
end
if (b(k) == 'l') && doublec(k, b, k0) && (measure(b, k0) > 1)
k = k-1;
end
s5 = {b(k0:k), k};

View File

@@ -0,0 +1,123 @@
function word_indices = processEmail(email_contents)
%PROCESSEMAIL preprocesses a the body of an email and
%returns a list of word_indices
% word_indices = PROCESSEMAIL(email_contents) preprocesses
% the body of an email and returns a list of indices of the
% words contained in the email.
%
% Load Vocabulary
vocabList = getVocabList();
% Init return value
word_indices = [];
% ========================== Preprocess Email ===========================
% Find the Headers ( \n\n and remove )
% Uncomment the following lines if you are working with raw emails with the
% full headers
% hdrstart = strfind(email_contents, ([char(10) char(10)]));
% email_contents = email_contents(hdrstart(1):end);
% Lower case
email_contents = lower(email_contents);
% Strip all HTML
% Looks for any expression that starts with < and ends with > and replace
% and does not have any < or > in the tag it with a space
email_contents = regexprep(email_contents, '<[^<>]+>', ' ');
% Handle Numbers
% Look for one or more characters between 0-9
email_contents = regexprep(email_contents, '[0-9]+', 'number');
% Handle URLS
% Look for strings starting with http:// or https://
email_contents = regexprep(email_contents, ...
'(http|https)://[^\s]*', 'httpaddr');
% Handle Email Addresses
% Look for strings with @ in the middle
email_contents = regexprep(email_contents, '[^\s]+@[^\s]+', 'emailaddr');
% Handle $ sign
email_contents = regexprep(email_contents, '[$]+', 'dollar');
% ========================== Tokenize Email ===========================
% Output the email to screen as well
fprintf('\n==== Processed Email ====\n\n');
% Process file
l = 0;
while ~isempty(email_contents)
% Tokenize and also get rid of any punctuation
[str, email_contents] = ...
strtok(email_contents, ...
[' @$/#.-:&*+=[]?!(){},''">_<;%' char(10) char(13)]);
% Remove any non alphanumeric characters
str = regexprep(str, '[^a-zA-Z0-9]', '');
% Stem the word
% (the porterStemmer sometimes has issues, so we use a try catch block)
try str = porterStemmer(strtrim(str));
catch str = ''; continue;
end;
% Skip the word if it is too short
if length(str) < 1
continue;
end
% Look up the word in the dictionary and add to word_indices if
% found
% ====================== YOUR CODE HERE ======================
% Instructions: Fill in this function to add the index of str to
% word_indices if it is in the vocabulary. At this point
% of the code, you have a stemmed word from the email in
% the variable str. You should look up str in the
% vocabulary list (vocabList). If a match exists, you
% should add the index of the word to the word_indices
% vector. Concretely, if str = 'action', then you should
% look up the vocabulary list to find where in vocabList
% 'action' appears. For example, if vocabList{18} =
% 'action', then, you should add 18 to the word_indices
% vector (e.g., word_indices = [word_indices ; 18]; ).
%
% Note: vocabList{idx} returns a the word with index idx in the
% vocabulary list.
%
% Note: You can use strcmp(str1, str2) to compare two strings (str1 and
% str2). It will return 1 only if the two strings are equivalent.
%
word_count = length(vocabList);
idx = strcmp(str,vocabList)'*(1:word_count)';
if idx > 0
word_indices = [word_indices; idx];
end
% =============================================================
% Print to screen, ensuring that the output lines are not too long
if (l + length(str) + 1) > 78
fprintf('\n');
l = 0;
end
fprintf('%s ', str);
l = l + length(str) + 1;
end
% Print footer
fprintf('\n\n=========================\n');
end

View File

@@ -0,0 +1,18 @@
function file_contents = readFile(filename)
%READFILE reads a file and returns its entire contents
% file_contents = READFILE(filename) reads a file and returns its entire
% contents in file_contents
%
% Load File
fid = fopen(filename);
if fid
file_contents = fscanf(fid, '%c', inf);
fclose(fid);
else
file_contents = '';
fprintf('Unable to open %s\n', filename);
end
end

View File

@@ -0,0 +1,42 @@
Do You Want To Make $1000 Or More Per Week?
If you are a motivated and qualified individual - I
will personally demonstrate to you a system that will
make you $1,000 per week or more! This is NOT mlm.
Call our 24 hour pre-recorded number to get the
details.
000-456-789
I need people who want to make serious money. Make
the call and get the facts.
Invest 2 minutes in yourself now!
000-456-789
Looking forward to your call and I will introduce you
to people like yourself who
are currently making $10,000 plus per week!
000-456-789
3484lJGv6-241lEaN9080lRmS6-271WxHo7524qiyT5-438rjUv5615hQcf0-662eiDB9057dMtVl72

View File

@@ -0,0 +1,8 @@
Best Buy Viagra Generic Online
Viagra 100mg x 60 Pills $125, Free Pills & Reorder Discount, Top Selling 100% Quality & Satisfaction guaranteed!
We accept VISA, Master & E-Check Payments, 90000+ Satisfied Customers!
http://medphysitcstech.ru

View File

@@ -0,0 +1,573 @@
function submit(partId, webSubmit)
%SUBMIT Submit your code and output to the ml-class servers
% SUBMIT() will connect to the ml-class server and submit your solution
fprintf('==\n== [ml-class] Submitting Solutions | Programming Exercise %s\n==\n', ...
homework_id());
if ~exist('partId', 'var') || isempty(partId)
partId = promptPart();
end
if ~exist('webSubmit', 'var') || isempty(webSubmit)
webSubmit = 0; % submit directly by default
end
% Check valid partId
partNames = validParts();
if ~isValidPartId(partId)
fprintf('!! Invalid homework part selected.\n');
fprintf('!! Expected an integer from 1 to %d.\n', numel(partNames) + 1);
fprintf('!! Submission Cancelled\n');
return
end
if ~exist('ml_login_data.mat','file')
[login password] = loginPrompt();
save('ml_login_data.mat','login','password');
else
load('ml_login_data.mat');
[login password] = quickLogin(login, password);
save('ml_login_data.mat','login','password');
end
if isempty(login)
fprintf('!! Submission Cancelled\n');
return
end
fprintf('\n== Connecting to ml-class ... ');
if exist('OCTAVE_VERSION')
fflush(stdout);
end
% Setup submit list
if partId == numel(partNames) + 1
submitParts = 1:numel(partNames);
else
submitParts = [partId];
end
for s = 1:numel(submitParts)
thisPartId = submitParts(s);
if (~webSubmit) % submit directly to server
[login, ch, signature, auxstring] = getChallenge(login, thisPartId);
if isempty(login) || isempty(ch) || isempty(signature)
% Some error occured, error string in first return element.
fprintf('\n!! Error: %s\n\n', login);
return
end
% Attempt Submission with Challenge
ch_resp = challengeResponse(login, password, ch);
[result, str] = submitSolution(login, ch_resp, thisPartId, ...
output(thisPartId, auxstring), source(thisPartId), signature);
partName = partNames{thisPartId};
fprintf('\n== [ml-class] Submitted Assignment %s - Part %d - %s\n', ...
homework_id(), thisPartId, partName);
fprintf('== %s\n', strtrim(str));
if exist('OCTAVE_VERSION')
fflush(stdout);
end
else
[result] = submitSolutionWeb(login, thisPartId, output(thisPartId), ...
source(thisPartId));
result = base64encode(result);
fprintf('\nSave as submission file [submit_ex%s_part%d.txt (enter to accept default)]:', ...
homework_id(), thisPartId);
saveAsFile = input('', 's');
if (isempty(saveAsFile))
saveAsFile = sprintf('submit_ex%s_part%d.txt', homework_id(), thisPartId);
end
fid = fopen(saveAsFile, 'w');
if (fid)
fwrite(fid, result);
fclose(fid);
fprintf('\nSaved your solutions to %s.\n\n', saveAsFile);
fprintf(['You can now submit your solutions through the web \n' ...
'form in the programming exercises. Select the corresponding \n' ...
'programming exercise to access the form.\n']);
else
fprintf('Unable to save to %s\n\n', saveAsFile);
fprintf(['You can create a submission file by saving the \n' ...
'following text in a file: (press enter to continue)\n\n']);
pause;
fprintf(result);
end
end
end
end
% ================== CONFIGURABLES FOR EACH HOMEWORK ==================
function id = homework_id()
id = '6';
end
function [partNames] = validParts()
partNames = { 'Gaussian Kernel', ...
'Parameters (C, sigma) for Dataset 3', ...
'Email Preprocessing' ...
'Email Feature Extraction' ...
};
end
function srcs = sources()
% Separated by part
srcs = { { 'gaussianKernel.m' }, ...
{ 'dataset3Params.m' }, ...
{ 'processEmail.m' }, ...
{ 'emailFeatures.m' } };
end
function out = output(partId, auxstring)
% Random Test Cases
x1 = sin(1:10)';
x2 = cos(1:10)';
ec = 'the quick brown fox jumped over the lazy dog';
wi = 1 + abs(round(x1 * 1863));
wi = [wi ; wi];
if partId == 1
sim = gaussianKernel(x1, x2, 2);
out = sprintf('%0.5f ', sim);
elseif partId == 2
load('ex6data3.mat');
[C, sigma] = dataset3Params(X, y, Xval, yval);
out = sprintf('%0.5f ', C);
out = [out sprintf('%0.5f ', sigma)];
elseif partId == 3
word_indices = processEmail(ec);
out = sprintf('%d ', word_indices);
elseif partId == 4
x = emailFeatures(wi);
out = sprintf('%d ', x);
end
end
% ====================== SERVER CONFIGURATION ===========================
% ***************** REMOVE -staging WHEN YOU DEPLOY *********************
function url = site_url()
url = 'http://class.coursera.org/ml-008';
end
function url = challenge_url()
url = [site_url() '/assignment/challenge'];
end
function url = submit_url()
url = [site_url() '/assignment/submit'];
end
% ========================= CHALLENGE HELPERS =========================
function src = source(partId)
src = '';
src_files = sources();
if partId <= numel(src_files)
flist = src_files{partId};
for i = 1:numel(flist)
fid = fopen(flist{i});
if (fid == -1)
error('Error opening %s (is it missing?)', flist{i});
end
line = fgets(fid);
while ischar(line)
src = [src line];
line = fgets(fid);
end
fclose(fid);
src = [src '||||||||'];
end
end
end
function ret = isValidPartId(partId)
partNames = validParts();
ret = (~isempty(partId)) && (partId >= 1) && (partId <= numel(partNames) + 1);
end
function partId = promptPart()
fprintf('== Select which part(s) to submit:\n');
partNames = validParts();
srcFiles = sources();
for i = 1:numel(partNames)
fprintf('== %d) %s [', i, partNames{i});
fprintf(' %s ', srcFiles{i}{:});
fprintf(']\n');
end
fprintf('== %d) All of the above \n==\nEnter your choice [1-%d]: ', ...
numel(partNames) + 1, numel(partNames) + 1);
selPart = input('', 's');
partId = str2num(selPart);
if ~isValidPartId(partId)
partId = -1;
end
end
function [email,ch,signature,auxstring] = getChallenge(email, part)
str = urlread(challenge_url(), 'post', {'email_address', email, 'assignment_part_sid', [homework_id() '-' num2str(part)], 'response_encoding', 'delim'});
str = strtrim(str);
r = struct;
while(numel(str) > 0)
[f, str] = strtok (str, '|');
[v, str] = strtok (str, '|');
r = setfield(r, f, v);
end
email = getfield(r, 'email_address');
ch = getfield(r, 'challenge_key');
signature = getfield(r, 'state');
auxstring = getfield(r, 'challenge_aux_data');
end
function [result, str] = submitSolutionWeb(email, part, output, source)
result = ['{"assignment_part_sid":"' base64encode([homework_id() '-' num2str(part)], '') '",' ...
'"email_address":"' base64encode(email, '') '",' ...
'"submission":"' base64encode(output, '') '",' ...
'"submission_aux":"' base64encode(source, '') '"' ...
'}'];
str = 'Web-submission';
end
function [result, str] = submitSolution(email, ch_resp, part, output, ...
source, signature)
params = {'assignment_part_sid', [homework_id() '-' num2str(part)], ...
'email_address', email, ...
'submission', base64encode(output, ''), ...
'submission_aux', base64encode(source, ''), ...
'challenge_response', ch_resp, ...
'state', signature};
str = urlread(submit_url(), 'post', params);
% Parse str to read for success / failure
result = 0;
end
% =========================== LOGIN HELPERS ===========================
function [login password] = loginPrompt()
% Prompt for password
[login password] = basicPrompt();
if isempty(login) || isempty(password)
login = []; password = [];
end
end
function [login password] = basicPrompt()
login = input('Login (Email address): ', 's');
password = input('Password: ', 's');
end
function [login password] = quickLogin(login,password)
disp(['You are currently logged in as ' login '.']);
cont_token = input('Is this you? (y/n - type n to reenter password)','s');
if(isempty(cont_token) || cont_token(1)=='Y'||cont_token(1)=='y')
return;
else
[login password] = loginPrompt();
end
end
function [str] = challengeResponse(email, passwd, challenge)
str = sha1([challenge passwd]);
end
% =============================== SHA-1 ================================
function hash = sha1(str)
% Initialize variables
h0 = uint32(1732584193);
h1 = uint32(4023233417);
h2 = uint32(2562383102);
h3 = uint32(271733878);
h4 = uint32(3285377520);
% Convert to word array
strlen = numel(str);
% Break string into chars and append the bit 1 to the message
mC = [double(str) 128];
mC = [mC zeros(1, 4-mod(numel(mC), 4), 'uint8')];
numB = strlen * 8;
if exist('idivide')
numC = idivide(uint32(numB + 65), 512, 'ceil');
else
numC = ceil(double(numB + 65)/512);
end
numW = numC * 16;
mW = zeros(numW, 1, 'uint32');
idx = 1;
for i = 1:4:strlen + 1
mW(idx) = bitor(bitor(bitor( ...
bitshift(uint32(mC(i)), 24), ...
bitshift(uint32(mC(i+1)), 16)), ...
bitshift(uint32(mC(i+2)), 8)), ...
uint32(mC(i+3)));
idx = idx + 1;
end
% Append length of message
mW(numW - 1) = uint32(bitshift(uint64(numB), -32));
mW(numW) = uint32(bitshift(bitshift(uint64(numB), 32), -32));
% Process the message in successive 512-bit chs
for cId = 1 : double(numC)
cSt = (cId - 1) * 16 + 1;
cEnd = cId * 16;
ch = mW(cSt : cEnd);
% Extend the sixteen 32-bit words into eighty 32-bit words
for j = 17 : 80
ch(j) = ch(j - 3);
ch(j) = bitxor(ch(j), ch(j - 8));
ch(j) = bitxor(ch(j), ch(j - 14));
ch(j) = bitxor(ch(j), ch(j - 16));
ch(j) = bitrotate(ch(j), 1);
end
% Initialize hash value for this ch
a = h0;
b = h1;
c = h2;
d = h3;
e = h4;
% Main loop
for i = 1 : 80
if(i >= 1 && i <= 20)
f = bitor(bitand(b, c), bitand(bitcmp(b), d));
k = uint32(1518500249);
elseif(i >= 21 && i <= 40)
f = bitxor(bitxor(b, c), d);
k = uint32(1859775393);
elseif(i >= 41 && i <= 60)
f = bitor(bitor(bitand(b, c), bitand(b, d)), bitand(c, d));
k = uint32(2400959708);
elseif(i >= 61 && i <= 80)
f = bitxor(bitxor(b, c), d);
k = uint32(3395469782);
end
t = bitrotate(a, 5);
t = bitadd(t, f);
t = bitadd(t, e);
t = bitadd(t, k);
t = bitadd(t, ch(i));
e = d;
d = c;
c = bitrotate(b, 30);
b = a;
a = t;
end
h0 = bitadd(h0, a);
h1 = bitadd(h1, b);
h2 = bitadd(h2, c);
h3 = bitadd(h3, d);
h4 = bitadd(h4, e);
end
hash = reshape(dec2hex(double([h0 h1 h2 h3 h4]), 8)', [1 40]);
hash = lower(hash);
end
function ret = bitadd(iA, iB)
ret = double(iA) + double(iB);
ret = bitset(ret, 33, 0);
ret = uint32(ret);
end
function ret = bitrotate(iA, places)
t = bitshift(iA, places - 32);
ret = bitshift(iA, places);
ret = bitor(ret, t);
end
% =========================== Base64 Encoder ============================
% Thanks to Peter John Acklam
%
function y = base64encode(x, eol)
%BASE64ENCODE Perform base64 encoding on a string.
%
% BASE64ENCODE(STR, EOL) encode the given string STR. EOL is the line ending
% sequence to use; it is optional and defaults to '\n' (ASCII decimal 10).
% The returned encoded string is broken into lines of no more than 76
% characters each, and each line will end with EOL unless it is empty. Let
% EOL be empty if you do not want the encoded string broken into lines.
%
% STR and EOL don't have to be strings (i.e., char arrays). The only
% requirement is that they are vectors containing values in the range 0-255.
%
% This function may be used to encode strings into the Base64 encoding
% specified in RFC 2045 - MIME (Multipurpose Internet Mail Extensions). The
% Base64 encoding is designed to represent arbitrary sequences of octets in a
% form that need not be humanly readable. A 65-character subset
% ([A-Za-z0-9+/=]) of US-ASCII is used, enabling 6 bits to be represented per
% printable character.
%
% Examples
% --------
%
% If you want to encode a large file, you should encode it in chunks that are
% a multiple of 57 bytes. This ensures that the base64 lines line up and
% that you do not end up with padding in the middle. 57 bytes of data fills
% one complete base64 line (76 == 57*4/3):
%
% If ifid and ofid are two file identifiers opened for reading and writing,
% respectively, then you can base64 encode the data with
%
% while ~feof(ifid)
% fwrite(ofid, base64encode(fread(ifid, 60*57)));
% end
%
% or, if you have enough memory,
%
% fwrite(ofid, base64encode(fread(ifid)));
%
% See also BASE64DECODE.
% Author: Peter John Acklam
% Time-stamp: 2004-02-03 21:36:56 +0100
% E-mail: pjacklam@online.no
% URL: http://home.online.no/~pjacklam
if isnumeric(x)
x = num2str(x);
end
% make sure we have the EOL value
if nargin < 2
eol = sprintf('\n');
else
if sum(size(eol) > 1) > 1
error('EOL must be a vector.');
end
if any(eol(:) > 255)
error('EOL can not contain values larger than 255.');
end
end
if sum(size(x) > 1) > 1
error('STR must be a vector.');
end
x = uint8(x);
eol = uint8(eol);
ndbytes = length(x); % number of decoded bytes
nchunks = ceil(ndbytes / 3); % number of chunks/groups
nebytes = 4 * nchunks; % number of encoded bytes
% add padding if necessary, to make the length of x a multiple of 3
if rem(ndbytes, 3)
x(end+1 : 3*nchunks) = 0;
end
x = reshape(x, [3, nchunks]); % reshape the data
y = repmat(uint8(0), 4, nchunks); % for the encoded data
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Split up every 3 bytes into 4 pieces
%
% aaaaaabb bbbbcccc ccdddddd
%
% to form
%
% 00aaaaaa 00bbbbbb 00cccccc 00dddddd
%
y(1,:) = bitshift(x(1,:), -2); % 6 highest bits of x(1,:)
y(2,:) = bitshift(bitand(x(1,:), 3), 4); % 2 lowest bits of x(1,:)
y(2,:) = bitor(y(2,:), bitshift(x(2,:), -4)); % 4 highest bits of x(2,:)
y(3,:) = bitshift(bitand(x(2,:), 15), 2); % 4 lowest bits of x(2,:)
y(3,:) = bitor(y(3,:), bitshift(x(3,:), -6)); % 2 highest bits of x(3,:)
y(4,:) = bitand(x(3,:), 63); % 6 lowest bits of x(3,:)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Now perform the following mapping
%
% 0 - 25 -> A-Z
% 26 - 51 -> a-z
% 52 - 61 -> 0-9
% 62 -> +
% 63 -> /
%
% We could use a mapping vector like
%
% ['A':'Z', 'a':'z', '0':'9', '+/']
%
% but that would require an index vector of class double.
%
z = repmat(uint8(0), size(y));
i = y <= 25; z(i) = 'A' + double(y(i));
i = 26 <= y & y <= 51; z(i) = 'a' - 26 + double(y(i));
i = 52 <= y & y <= 61; z(i) = '0' - 52 + double(y(i));
i = y == 62; z(i) = '+';
i = y == 63; z(i) = '/';
y = z;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Add padding if necessary.
%
npbytes = 3 * nchunks - ndbytes; % number of padding bytes
if npbytes
y(end-npbytes+1 : end) = '='; % '=' is used for padding
end
if isempty(eol)
% reshape to a row vector
y = reshape(y, [1, nebytes]);
else
nlines = ceil(nebytes / 76); % number of lines
neolbytes = length(eol); % number of bytes in eol string
% pad data so it becomes a multiple of 76 elements
y = [y(:) ; zeros(76 * nlines - numel(y), 1)];
y(nebytes + 1 : 76 * nlines) = 0;
y = reshape(y, 76, nlines);
% insert eol strings
eol = eol(:);
y(end + 1 : end + neolbytes, :) = eol(:, ones(1, nlines));
% remove padding, but keep the last eol string
m = nebytes + neolbytes * (nlines - 1);
n = (76+neolbytes)*nlines - neolbytes;
y(m+1 : n) = '';
% extract and reshape to row vector
y = reshape(y, 1, m+neolbytes);
end
% output is a character array
y = char(y);
end

View File

@@ -0,0 +1,20 @@
% submitWeb Creates files from your code and output for web submission.
%
% If the submit function does not work for you, use the web-submission mechanism.
% Call this function to produce a file for the part you wish to submit. Then,
% submit the file to the class servers using the "Web Submission" button on the
% Programming Exercises page on the course website.
%
% You should call this function without arguments (submitWeb), to receive
% an interactive prompt for submission; optionally you can call it with the partID
% if you so wish. Make sure your working directory is set to the directory
% containing the submitWeb.m file and your assignment files.
function submitWeb(partId)
if ~exist('partId', 'var') || isempty(partId)
partId = [];
end
submit(partId, 1);
end

View File

@@ -0,0 +1,54 @@
function pred = svmPredict(model, X)
%SVMPREDICT returns a vector of predictions using a trained SVM model
%(svmTrain).
% pred = SVMPREDICT(model, X) returns a vector of predictions using a
% trained SVM model (svmTrain). X is a mxn matrix where there each
% example is a row. model is a svm model returned from svmTrain.
% predictions pred is a m x 1 column of predictions of {0, 1} values.
%
% Check if we are getting a column vector, if so, then assume that we only
% need to do prediction for a single example
if (size(X, 2) == 1)
% Examples should be in rows
X = X';
end
% Dataset
m = size(X, 1);
p = zeros(m, 1);
pred = zeros(m, 1);
if strcmp(func2str(model.kernelFunction), 'linearKernel')
% We can use the weights and bias directly if working with the
% linear kernel
p = X * model.w + model.b;
elseif strfind(func2str(model.kernelFunction), 'gaussianKernel')
% Vectorized RBF Kernel
% This is equivalent to computing the kernel on every pair of examples
X1 = sum(X.^2, 2);
X2 = sum(model.X.^2, 2)';
K = bsxfun(@plus, X1, bsxfun(@plus, X2, - 2 * X * model.X'));
K = model.kernelFunction(1, 0) .^ K;
K = bsxfun(@times, model.y', K);
K = bsxfun(@times, model.alphas', K);
p = sum(K, 2);
else
% Other Non-linear kernel
for i = 1:m
prediction = 0;
for j = 1:size(model.X, 1)
prediction = prediction + ...
model.alphas(j) * model.y(j) * ...
model.kernelFunction(X(i,:)', model.X(j,:)');
end
p(i) = prediction + model.b;
end
end
% Convert predictions into 0 / 1
pred(p >= 0) = 1;
pred(p < 0) = 0;
end

View File

@@ -0,0 +1,192 @@
function [model] = svmTrain(X, Y, C, kernelFunction, ...
tol, max_passes)
%SVMTRAIN Trains an SVM classifier using a simplified version of the SMO
%algorithm.
% [model] = SVMTRAIN(X, Y, C, kernelFunction, tol, max_passes) trains an
% SVM classifier and returns trained model. X is the matrix of training
% examples. Each row is a training example, and the jth column holds the
% jth feature. Y is a column matrix containing 1 for positive examples
% and 0 for negative examples. C is the standard SVM regularization
% parameter. tol is a tolerance value used for determining equality of
% floating point numbers. max_passes controls the number of iterations
% over the dataset (without changes to alpha) before the algorithm quits.
%
% Note: This is a simplified version of the SMO algorithm for training
% SVMs. In practice, if you want to train an SVM classifier, we
% recommend using an optimized package such as:
%
% LIBSVM (http://www.csie.ntu.edu.tw/~cjlin/libsvm/)
% SVMLight (http://svmlight.joachims.org/)
%
%
if ~exist('tol', 'var') || isempty(tol)
tol = 1e-3;
end
if ~exist('max_passes', 'var') || isempty(max_passes)
max_passes = 5;
end
% Data parameters
m = size(X, 1);
n = size(X, 2);
% Map 0 to -1
Y(Y==0) = -1;
% Variables
alphas = zeros(m, 1);
b = 0;
E = zeros(m, 1);
passes = 0;
eta = 0;
L = 0;
H = 0;
% Pre-compute the Kernel Matrix since our dataset is small
% (in practice, optimized SVM packages that handle large datasets
% gracefully will _not_ do this)
%
% We have implemented optimized vectorized version of the Kernels here so
% that the svm training will run faster.
if strcmp(func2str(kernelFunction), 'linearKernel')
% Vectorized computation for the Linear Kernel
% This is equivalent to computing the kernel on every pair of examples
K = X*X';
elseif strfind(func2str(kernelFunction), 'gaussianKernel')
% Vectorized RBF Kernel
% This is equivalent to computing the kernel on every pair of examples
X2 = sum(X.^2, 2);
K = bsxfun(@plus, X2, bsxfun(@plus, X2', - 2 * (X * X')));
K = kernelFunction(1, 0) .^ K;
else
% Pre-compute the Kernel Matrix
% The following can be slow due to the lack of vectorization
K = zeros(m);
for i = 1:m
for j = i:m
K(i,j) = kernelFunction(X(i,:)', X(j,:)');
K(j,i) = K(i,j); %the matrix is symmetric
end
end
end
% Train
fprintf('\nTraining ...');
dots = 12;
while passes < max_passes,
num_changed_alphas = 0;
for i = 1:m,
% Calculate Ei = f(x(i)) - y(i) using (2).
% E(i) = b + sum (X(i, :) * (repmat(alphas.*Y,1,n).*X)') - Y(i);
E(i) = b + sum (alphas.*Y.*K(:,i)) - Y(i);
if ((Y(i)*E(i) < -tol && alphas(i) < C) || (Y(i)*E(i) > tol && alphas(i) > 0)),
% In practice, there are many heuristics one can use to select
% the i and j. In this simplified code, we select them randomly.
j = ceil(m * rand());
while j == i, % Make sure i \neq j
j = ceil(m * rand());
end
% Calculate Ej = f(x(j)) - y(j) using (2).
E(j) = b + sum (alphas.*Y.*K(:,j)) - Y(j);
% Save old alphas
alpha_i_old = alphas(i);
alpha_j_old = alphas(j);
% Compute L and H by (10) or (11).
if (Y(i) == Y(j)),
L = max(0, alphas(j) + alphas(i) - C);
H = min(C, alphas(j) + alphas(i));
else
L = max(0, alphas(j) - alphas(i));
H = min(C, C + alphas(j) - alphas(i));
end
if (L == H),
% continue to next i.
continue;
end
% Compute eta by (14).
eta = 2 * K(i,j) - K(i,i) - K(j,j);
if (eta >= 0),
% continue to next i.
continue;
end
% Compute and clip new value for alpha j using (12) and (15).
alphas(j) = alphas(j) - (Y(j) * (E(i) - E(j))) / eta;
% Clip
alphas(j) = min (H, alphas(j));
alphas(j) = max (L, alphas(j));
% Check if change in alpha is significant
if (abs(alphas(j) - alpha_j_old) < tol),
% continue to next i.
% replace anyway
alphas(j) = alpha_j_old;
continue;
end
% Determine value for alpha i using (16).
alphas(i) = alphas(i) + Y(i)*Y(j)*(alpha_j_old - alphas(j));
% Compute b1 and b2 using (17) and (18) respectively.
b1 = b - E(i) ...
- Y(i) * (alphas(i) - alpha_i_old) * K(i,j)' ...
- Y(j) * (alphas(j) - alpha_j_old) * K(i,j)';
b2 = b - E(j) ...
- Y(i) * (alphas(i) - alpha_i_old) * K(i,j)' ...
- Y(j) * (alphas(j) - alpha_j_old) * K(j,j)';
% Compute b by (19).
if (0 < alphas(i) && alphas(i) < C),
b = b1;
elseif (0 < alphas(j) && alphas(j) < C),
b = b2;
else
b = (b1+b2)/2;
end
num_changed_alphas = num_changed_alphas + 1;
end
end
if (num_changed_alphas == 0),
passes = passes + 1;
else
passes = 0;
end
fprintf('.');
dots = dots + 1;
if dots > 78
dots = 0;
fprintf('\n');
end
if exist('OCTAVE_VERSION')
fflush(stdout);
end
end
fprintf(' Done! \n\n');
% Save the model
idx = alphas > 0;
model.X= X(idx,:);
model.y= Y(idx);
model.kernelFunction = kernelFunction;
model.b= b;
model.alphas= alphas(idx);
model.w = ((alphas.*Y)'*X)';
end

View File

@@ -0,0 +1,24 @@
function visualizeBoundary(X, y, model, varargin)
%VISUALIZEBOUNDARY plots a non-linear decision boundary learned by the SVM
% VISUALIZEBOUNDARYLINEAR(X, y, model) plots a non-linear decision
% boundary learned by the SVM and overlays the data on it
% Plot the training data on top of the boundary
plotData(X, y)
% Make classification predictions over a grid of values
x1plot = linspace(min(X(:,1)), max(X(:,1)), 100)';
x2plot = linspace(min(X(:,2)), max(X(:,2)), 100)';
[X1, X2] = meshgrid(x1plot, x2plot);
vals = zeros(size(X1));
for i = 1:size(X1, 2)
this_X = [X1(:, i), X2(:, i)];
vals(:, i) = svmPredict(model, this_X);
end
% Plot the SVM boundary
hold on
contour(X1, X2, vals, [0 0], 'Color', 'b');
hold off;
end

View File

@@ -0,0 +1,16 @@
function visualizeBoundaryLinear(X, y, model)
%VISUALIZEBOUNDARYLINEAR plots a linear decision boundary learned by the
%SVM
% VISUALIZEBOUNDARYLINEAR(X, y, model) plots a linear decision boundary
% learned by the SVM and overlays the data on it
w = model.w;
b = model.b;
xp = linspace(min(X(:,1)), max(X(:,1)), 100);
yp = - (w(1)*xp + b)/w(2);
plotData(X, y);
hold on;
plot(xp, yp, '-b');
hold off
end

Some files were not shown because too many files have changed in this diff Show More